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We present a network visualization approach based on the spatialization framework
proposed by Fabrikant and Skupin (2005) which allows the perceptually salient and
cognitively plausible information visualization of large relational datasets at high
aggregation level. The framework is put to a rigorous test in a case study aimed at
uncovering the latent relational structure of global cities, based on air passenger volumes. A
force-directed placement algorithm is employed to depict cities (i.e., nodes) and respective
passenger flows between the cities (i.e., edges) as a network in relational data space. The
relational dataset is further semantically and cartographically generalized by means of
common network clustering methods coupled with the adaptive multiplicative weighted
Voronoi algorithm (AMWVD). Qualitative expert interviews have been carried out for
evaluating the resulting generalized network visualizations. The evaluation confirms the
overall validity of methodological framework and suggests further steps for refinement.

INTRODUCTION

Vast amounts of relational data are becoming available through easily accessible online
databases such as, Facebook, Wikipedia, and the WWW, to study the networked information
society. Effective and efficient methods for the analysis and visualization of such large
relational datasets have gained in importance in the last years for various research
communities, mostly outside of cartography. The multivariate complexity of information
networks poses specific challenges for visual information exploration, which opens the door
for novel and alternative visualization methods (Viégas and Donath 2004).

One problem in network analysis and visualization today is that commonly accepted
methods have been introduced at a time when the researched networks consisted of
typically only a few dozen nodes and links (Viégas and Donath 2004). Networks analyzed
today may have tens of thousands nodes and links, and thus the classic network visualization
approaches break down, as can be seen in Figure 1, where in fact no structure can be
discovered at alll Commonly applied graph drawing methods, typically based on graph
aesthetics measures such as, minimizing crossing edges, symmetry, etc. (Di Battista et al.
1994) have rarely, if not at all, been empirical evaluated (Ware et al. 2002). One problem
with graph aesthetics measures is that they lack solid theoretical and empirical foundations.
It is still not clear today what aesthetics criterion (or which combinations) and for which
particular use context can improve a network layout, as desired by the graph drawing
community (Purchase 1998, Bennett et al 2007).
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Figure 1: Global cities network spatialization based on air passenger flows 2004 (ENAC, 2004; IGUL 2008).
Layout is generated with a Kamada-Kawai algorithm.

One main challenge in network visualization is to reduce data complexity by projecting a
multivariate (origin-destination) data matrix onto a lower dimensional (i.e., two-
dimensional) planar display space. This spatialization is achieved by selecting the
thematically most important and perceptually most salient links and nodes without losing
the overall structure of the original network. Dealing with multivariate data reduction and
effective visuo-spatial representation in a two-dimensional plane is obviously one of the
main goals of cartography. The applicability of cartographic and geovisualization methods for
spatialization has been empirically validated in earlier work (Skupin and Fabrikant 2003;
Fabrikant et al. 2004), and the benefit of applying these methods to non-spatial data is well
documented (Couclelis 2002; Fabrikant and Skupin 2005). Other visualization communities
and fields thus may well benefit from the rich body of work available in cartography (Slocum
et al. 2010).

In this paper, we present a perceptually salient and cognitively plausible information
visualization approach for large relational datasets. This approach is based on the
spatialization framework proposed by Fabrikant and Skupin (2005). The framework is put to
a rigorous test in a case study aimed at uncovering the latent relational structure of global
cities, based on air passenger volumes (ENAC, 2004; IGUL 2008). The connectivity of the
cities is expressed with the number of airline passenger between them. This is an established
method in economic geography to approximate the relationship between cities in studies
about global city networks. However, this approach also includes some critical limitations,
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for example, the occurrence of touristically attractive destinations being over represented in
airline travel data (Derudder and Wiltox 2008). We are aware of this data limitation in our
case study, but this has no implication for our methodological contribution.

SPATIALIZATION FRAMEWORK

The spatialization framework (Fabrikant and Skupin 2005) suggests “the systematic
transformation of high-dimensional data sets into lower-dimensional, spatial representations
for facilitating data exploration and knowledge construction” (Skupin and Fabrikant 2007). It
also allows the perceptually salient and cognitively plausible information visualization of
large relational datasets. Similarly to cartographic generalization, the spatialization
framework includes semantic and geometric generalization.

The semantic generalization process in spatialization relates to the identification of the
appropriate spatial metaphors which captures the essential characteristics of the data
entities to be visualized (Fabrikant and Skupin 2005). Sound metaphors not only combine
semantic properties from a source domain, but also ideally contain cognitive and
experiential aspects (Fabrikant and Skupin 2005). Examples of such metaphors are the
landscape metaphor for a continuous data space, the city metaphor for discrete data spaces,
the scale metaphor for underlining the change in level of detail, among others. Fabrikant and
Skupin (2005) identify four semantic primitives as the building blocks of more complex
spatial metaphors. These primitives are applicable to a range of information types, and are
associated with a range of geographic source domains. The four semantic primitives are:
locus, trajectory, boundary, and aggregate (Fabrikant and Skupin 2005). Locus is
characterized by a location a two-dimensional representational space which is determined
by its semantic relationships with other information items in this space. Trajectory is a linear
entity type, which underlines the relationship between items. Boundary is also a linear type
of representation and it captures discontinuities in an information space. Boundaries
delineate semantic regions. Semantic regions are called aggregates, and they represent an
areal entity type. An aggregate is the result of a classification process; it is understood as a
homogenous zone (with or without a discrete boundary) that can be distinguished from
other zones (Fabrikant and Skupin 2005).

The geometric generalization deals with the perceptually salient depiction of the semantic
primitives. As soon the semantic primitives are assigned, they can be straightforwardly
represented graphically, using Bertin’s (1967) commonly known visual variables (Fabrikant
and Skupin 2005). For example, depending on the displayed scale, the semantic primitive
locus may be represented as a point or an area, the linear primitive trajectory and boundary
by a line, and the aggregate primitive by a point or a polygon (Fabrikant and Skupin 2005).

SEMANTICS OF THE GLOBAL CITY NETWORK
Different spatial metaphors capture different characteristics of the global city network. We
identify two main metaphors: the distance-relatedness, and the scale metaphor.



The distance-relatedness metaphor is actually a modification of the well-known distance-
similarity metaphor (Fabrikant et al. 2004), and is also based on the commonly known “first
law of geography: everything is related to everything else, but near things are more related
then distant things” (Tobler 1970). In other words, near items (cities) in the topological space
are more strongly connected than distant cities.

The semantic primitive locus captures the placement of cities, represented as nodes, in our
network data space. City (i.e., node) placement is dependent on a city’s interactions with
other cities. In traditional network analysis and visualization, edges are used to emphasize
the relations between the nodes. In our approach, we also emphasize the discontinuity
between nodes with the boundary metaphor, to show cities that are not at all or only weakly
connected.

The second metaphor used in our example is the scale metaphor. The scale metaphor is not
only fundamental to geographical analysis, but it is also associated with cognitive and
experiential properties of the real world (Fabrikant 2001a), such as human perception and
cognition of geographical phenomena and processes. As we change the viewing scale, the
thematic focus changes, for example, from the single field to a complete landscape. The
scale metaphor allows us to solve the data density problem in large networks by establishing
a hierarchical order of data items based on different levels of detail. Similarly to topographic
map series, on a smaller scale, the focus of interest may be on regions or larger cities, while
at larger map scale, smaller cities and towns become more relevant.

DATA TRANSFORMATION AND GEOMETRIC IMPLEMENTATION

For the geometric generalization step we propose an interdisciplinary approach which
integrates methods from geovisual analytics, cartographic design, social network analysis
(Wasserman and Faust 2008), and information visualization, including graph drawing (Di
Battista et al. 1994).

As described earlier, we are interested in highlighting a city’s location in a topological
information space, based on air passenger data, by means of the distance-relatedness
metaphor. Graph drawing algorithms (Di Battista et al. 1994) seem useful for this step. With
DrL (Davidson et al. 2001), we chose a force directed placement algorithm to transform the
data matrix into a network (Chen 2004). The force directed placement algorithm places
strongly connected cities closer together on the network than less connected ones.

Next, we are interested in depicting the underlying semantic hierarchy in the city network.
At smaller (coarser) scale we want to highlight regions and larger cities. Both, city size and
regional organization can be defined in a cities network. Highly connected cities form city
communities or urban regions. These regions are defined by high within-community
connectivity, and sparse relations between other communities (Newman and Girvan 2004).
We calculate city communities with the Newman and Girvan (2004) algorithm which
iteratively removes links between cities with the greatest betweenness. Betweenness is



defined as the sum of all shortest connections between every single node in the network
(Wasserman and Faust 2008).

This coarser level of the semantic hierarchy is depicted with homogeneously colored
community zones, to visually emphasize the containment principle, as one key
characteristics of the hierarchical organization (Fabrikant 2001b). City regions on smaller
scale vary in size proportionally to passenger flow volumes between cities. We employed the
adaptive multiplicative weighted Voronoi method (AMWVD) to achieve this (Reitsma et al.
2007). The AMWVD is in essence an extension of the classical Verona tessellation. We
implemented an OpenJump GIS plug-in, which transforms given nodes into AMWVD
polygons, and additionally creates a convex hull that includes all generating nodes. As the
AMWVD method is computationally expensive, we calculated the AMWVD only for the most
thematically salient cities in the network, which is sufficient for our case study. The saliency
of a city is given by the quantity and quality of its relations to other cities. Guimera and
Amaral (2005) developed a detailed taxonomy of nodes based on their functions in a
network. For example, the most important cities in a network are called hubs. Hubs have a
high degree of network centrality, and are defined by many within- and between-community
connections. The between-community connections are typically with other hubs. The result
of the AMWVD spatialization is shown in Figure 2 below.
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Figure 2: Global cities network based on air passenger flows 2004 at the regional level.

The cities shown in the AMWVD in Figure 2 are all considered hubs in the passenger flow
data space (ENAC, 2004; IGUL 2008). The AMWVD reveals hub polygons scaled according to
annual air passenger volumes. The hub labels are placed within the largest polygon fragment
(explained further down) of the AMWVD polygons, to indicate the relative location of the
hub to other hubs. Additionally, label size indicates the degree of node centrality. More
central hubs have larger labels than less central ones. For example, the growing importance
of Dubai as a recent hub in international air traffic becomes apparent in this way.

We use the visual variable color hue to distinguish the community membership of cities. We

employed ColorBrewer2 to assign cartographically sound colors emphasizing the qualitative
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aspect of our data (Brewer et al. 2003). The hub regions (e.g., the East Asian hub cluster in
brown) emerge as a result of the within/between connectivity analysis described earlier. The
uncovered regions appear meaningful at first glance, as hubs within the same geographic
region appear near each other in the spatialization. For example, Zurich, London, Paris and
Amsterdam are all located within the blue European cluster. On the one hand, this seems
unsurprising, as airplane movement is typically constrained by a finite flight range, thus the
geographical configuration is implicitly re-produced in the spatialization. However, we might
also discover a cultural effect in Figure 2. For example, Auckland (NZ) is placed not only close
to East Asian cities (logical in terms of flight distance), but also to linguistically similar North
American hubs, and culturally close western European cities.

The semantic primitive boundary is also used in Figure 2 to depict the kind of relationship
between the different cities (i.e., hubs) in the global city network. The visualization of the
boundary primitive is perceptually necessary, as the AMWYVD might create polygons that
share a common border, but that are not necessarily directly related with each other. We
employ dashed boundary lines to visually distinguish adjacent polygons which have direct
network connections (i.e., are permeable via hubs), from those that do not. Zones that are
not connected directly via hubs are distinguished with a solid boundary line. This literally
means that no direct passenger flow exist between these polygons. For example, the
adjacent cities Zurich and London are directly related, as they share a permeable (dashed)
polygon boundary, whereas London and Paris surprisingly seem not related, as they are
separated by a solid boundary. It so happens that the flight connections between Paris and
London were not included in the used dataset, and this is revealed by the spatialization.

Figure 2 also exemplifies a more general issue with the AMWVD method, as fragmented (i.e.,
discontinuous) polygons can occur as mentioned earlier (i.e., Frankfurt). The polygon labeled
Frankfurt at the lower left corner of Figure 2 belongs to a much larger, but fragmented
polygon for this city. The generator point for Frankfurt lies within an unlabeled blue zone to
the East of Auckland, with unlabeled green polygons at its southern border. This can happen
when generator points that are close to each other also have higher weights than the other
nodes in the database. Large polygons bend beyond the spatial extent of the convex hull,
and reenter the map where there is enough space left for expansion, and thus might enclose
other smaller polygons as a result (Reitsma et al. 2007).

EVALUATION

Qualitative expert interviews (including data experts and visualization experts) have been
carried out for evaluating the resulting network visualizations at various levels of detail. For
this paper, we report only on the results for the region level (Figure 2). For most of the
experts the visualization was completely unfamiliar. This can of course influence its
evaluation, as we did not explain the displays at the outset, and did not give experts
respective training for correct interpretation. Overall, the evaluation confirms the validity of
a cartographically sound methodological framework. The experts find the network
visualizations thematically meaningful, and confirm that the chosen visualization approach
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indeed emphasizes cluster structure in the data: cluster membership of a city is easily visible
and understandable through meaningful relative location and cluster assignment by color
hue. The added benefit of simplification through aggregation (i.e., points to polygons) is
somewhat reduced by the general unfamiliarity with this kind of visualization, and respective
resulting of unintuitive geometry (i.e., island polygons). All experts found the interpretation
of the island polygons (as one typical artifact of the AMWVD) conceptually difficult to
understand. Moreover, island polygons were also found to be perceptually problematic, as
the assessment of disconnected polygons makes magnitude judgment and comparison more
difficult. Interestingly, in an empirical study by Reitsma and Trubin (2007), where
participants were specifically asked to estimate polygon sizes in two standard continuous
tessellations, compared to the AMWVD, the researchers did not find any evidence that size
estimation with the AMWVD was more difficult or included more errors, compared to the
two other continuous tessellation methods. Clearly, the careful application of Bertin’s visual
variables also helps to improve the readability of the visualizations.

SUMMARY AND OUTLOOK

In this paper, we detail our network spatialization approach based on a theoretically sound
spatialization framework, coupled with systematic use of cartographic depiction methods.
We apply the proposed framework to identify a global city network, based on global air
passenger flow data. The distance-relatedness metaphor and the scale metaphor capture
the main semantic characteristics of this network. For the geometric generalization step we
propose a novel approach which integrates a forced directed placement algorithm (DrL) with
adaptive multiplicative weighted Verona (AMWVD) polygons, for the thematically relevant
and perceptually salient visualization of networks at coarser levels of detail. A qualitative
expert evaluation confirms the overall validity of this network visualization approach based
on simplification through aggregation (i.e. points to polygon transformation). However, our
empirical results also raise new questions about the cognitive adequacy of the AMWYVD
approach, especially relating to the complex, and somewhat unintuitive geometry. A future
research avenue therefore will be to further explore the potential of the AMWYVD in the
network context. On the one hand, the ambivalent evaluation outcome could be due to
inherent limitations of the algorithm, which would then require algorithm redesign, or it
might be simply related to user unfamiliarity, which—like map reading in general—could be
solved with adequate training, to yield the expected benefits.
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