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Abstract. We study a geometric representation problem, where we are given a
set B of axis-aligned rectangles (boxes) with fixed dimensions and a graph with
vertex set B. The task is to place the rectangles without overlap such that two rect-
angles touch if the graph contains an edge between them. We call this problem
CONTACT REPRESENTATION OF WORD NETWORKS (CROWN). It formalizes
the geometric problem behind drawing word clouds in which semantically re-
lated words are close to each other. Here, we represent words by rectangles and
semantic relationships by edges.

We show that CROWN is strongly NP-hard even if restricted to trees and
weakly NP-hard if restricted to stars. We also consider the optimization prob-
lem MAX-CROWN where each adjacency induces a certain profit and the task is
to maximize the sum of the profits. For this problem, we present constant-factor
approximations for several graph classes, namely stars, trees, planar graphs, and
graphs of bounded degree. Finally, we evaluate the algorithms experimentally and
show that our best method improves upon the best existing heuristic by 45%.

1 Introduction

Word clouds and tag clouds are popular ways to visualize text. They provide an appeal-
ing way to summarize the content of a webpage, a research paper, or a political speech.
Often such visualizations are used to contrast two documents; for example, word cloud
visualizations of the speeches given by the candidates in the 2008 US Presidential elec-
tions were used to draw sharp contrast between them in the popular media.
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A practical tool, Wordle [23], which is available on-line, offers high-quality design,
graphics, style and functionality, but ignores relationships between words in the input.
While some of the more recent word cloud visualization tools aim to incorporate se-
mantics in the layout, none provides any guarantees about the quality of the layout in
terms of semantics. We propose a mathematical model of the problem via a simple
edge-weighted graph. The vertices in the graph are the words in the document. The
edges in the graph correspond to semantic relatedness, with weights corresponding to
the strength of the relation. Each vertex must be drawn as an axis-aligned rectangle
(box, for short) with fixed dimensions. Usually, the dimensions will be determined by
the size of the word in a certain font, and the font size will be related to the importance
of the word. The goal is to “realize” as many edges as possible by contacts between
their corresponding rectangles; see Fig. 1.

Related Work. Hierarchically clustered document collections are often visualized with
self-organizing maps [15] and Voronoi treemaps [18]. The early word-cloud approaches
did not explicitly use semantic information, such as word relatedness, when placing the
words in the cloud. More recent approaches attempt to do so, as in ManiWordle [14]
and in parallel tag clouds [4]. The most relevant approaches rely on force-directed graph
visualization methods [5] and a seam-carving image processing method together with a
force-directed heuristic [24]. The semantics-preserving word cloud problem is related
to classic graph layout problems, where the goal is to draw graphs so that vertex labels
are readable and Euclidean distances between pairs of vertices are proportional to the
underlying graph distance between them. Typically, however, vertices are treated as
points and label overlap removal is a post-processing step [7,11].

In rectangle representations of graphs, vertices are axis-aligned rectangles with non-
intersecting interiors and edges correspond to rectangles with non-zero length common
boundary. Every graph that can be represented this way is planar and every triangle in
such a graph is a facial triangle; these two conditions are also sufficient to guarantee
a rectangle representation [22]. In a recent survey, Felsner [9] reviews many rectan-
gulation variants, including squarings. Algorithms for area-preserving rectangular car-
tograms are also related [21]. Area-universal rectangular representations where vertex
weights are represented by area have been characterized [8] and edge-universal repre-
sentations, where edge weights are represented by length of contacts have been stud-
ied [19]. Unlike cartograms, in our setting there is no inherent geography, and hence,
words can be positioned anywhere. Moreover, each word has fixed dimensions enforced
by its frequency in the input text, rather than just fixed area.

Our Contribution. The input to the problem variants we consider is a (multi)set B of
axis-aligned boxes B1, . . . , Bn with fixed positive dimensions and an edge-weighted
undirected graph G = (B, E), called the profit graph. Box Bi has an associated size
(wi, hi), wherewi and hi are its width and height. For some of our results, boxes may be
rotated by 90◦, which means exchanging wi and hi. By scaling appropriately, we may
always assume that all heights and widths are positive integers. The vertex set of G is B.
Every edge (Bi, Bj) ∈ E has a positive weight pij , called its profit, representing the
gain for making boxes Bi and Bj touch. A representation of B is a map that associates
with each box a position in the plane so that no two boxes overlap. A contact between
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Fig. 1. A hierarchical word cloud for complexity classes. A class is above another class when
the former contains the latter. The font size is the square root of millions of Google hits for the
corresponding word. This is an instance of the problem variant HIER-CROWN.

two boxes is a maximal line segment of positive length in the boundary of both. If two
boxes are in contact, we say that they touch. If two boxes touch and one lies above the
other, we call this a vertical contact. We define horizontal contact symmetrically. We
say that a representation realizes an edge (Bi, Bj) ∈ E if Bi and Bj touch. Finally, we
define the total profit of a representation to be the sum of profits over all edges of G that
the representation realizes. Our problems and results are as follows.

Contact Representation of Word Networks (CROWN) is to decide whether there ex-
ists a representation of the given boxes that realizes all edges of the profit graph. This is
equivalent to deciding whether there is a representation whose contact graph contains
the profit graph as a subgraph. If such a representation exists, we say that it realizes the
profit graph and that the given instance of CROWN is realizable.

We show that CROWN is strongly NP-hard even if restricted to trees and weakly NP-
hard if restricted to stars; see Theorem 1. We also consider two variants of the problem
that can be solved efficiently. First we present a linear-time algorithm for CROWN on so-
called irreducible triangulations; see Section 2.1. Then we turn to the problem variant
HIER-CROWN, where the profit graph is a single-source directed acyclic graph with
fixed plane embedding, and the task is to find a representation in which each edge
corresponds to a vertical contact directed upwards; see Fig. 1. We solve this variant
efficiently; see Section 2.2.
MAX-CROWN is the optimization version of CROWN where the task is to find a box
representation maximizing the total profit. We present constant-factor approximation al-
gorithms for stars, trees, and planar graphs, and a 2/�Δ+1�-approximation for graphs
of maximum degree Δ; see Section 3. We have implemented two approximation algo-
rithms and evaluated them experimentally in comparison to three existing algorithms
(two of which are semantics-aware). Based on a dataset of 120 Wikipedia documents
our best method outperforms the best previous method by more than 45%; see Sec-
tion 5. We also consider an extremal version of the MAX-CROWN problem and show
that the complete graph Kn (n ≥ 7) with unit profits can always be realized with total
profit 2n− 2, which is sometimes the best possible; see Section 3.2.
AREA-CROWN is as follows: Given a realizable instance of CROWN, find a repre-
sentation that realizes the profit graph and minimizes the area of the representation’s
bounding box. We show that the problem is NP-hard even if restricted to paths; see
Section 4.
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Fig. 2. Given an instance S of 3-PARTITION, we construct a tree TS (thick red line segments)
and define boxes such that TS has a realization if and only if S is feasible

2 The CROWN Problem

In this section, we investigate the complexity of CROWN for several graph classes.

Theorem 1. CROWN is (strongly) NP-hard. The problem remains strongly NP-hard
even if restricted to trees and is weakly NP-hard if restricted to stars.

Proof. To show that CROWN on stars is weakly NP-hard, we reduce from the weakly
NP-hard problem PARTITION, which asks whether a given multiset of n positive inte-
gers a1, . . . , an that sum to B can be partitioned into two subsets, each of sum B/2.
We construct a star graph whose central vertex corresponds to a (B/2, δ)-box (for
some 0 < δ < mini ai). We add four leaves corresponding to (B,B)-squares and, for
i = 1, . . . , n, a leaf corresponding to an (ai, ai)-square. It is easy to verify that there is
a realization for this instance of CROWN if and only if the set can be partitioned.

To show that CROWN is (strongly) NP-hard, we reduce from 3-PARTITION: Given
a multiset S of n = 3m integers with

∑
S = mB, is there a partition of S into m

subsets S1, . . . , Sm such that
∑

Si = B for each i? It is known that 3-PARTITION is
NP-hard even if, for every s ∈ S, we have B/4 < s < B/2, which implies that each of
the subsets S1, . . . , Sm must contain exactly three elements [12].

Given an instance S = {s1, s2, . . . , sn} of 3-PARTITION as described above, we
define a tree TS on n+ 4(m− 1) + 7 vertices as in Fig. 2 (for n = 9 and m = 3). Let
K = (m+ 1)B +m+ 1. We make a vertex c of size (K, 1/2). For each i = 1, . . . , n,
we make a vertex vi of size (si, B). Let ε ∈ (0, B/2). For each j = 0, . . . ,m, we make
a vertex uj of size (1, B + ε), a vertex bj of size (1, B − ε), and vertices �j and rj
of size (B/2, B). Finally, we make vertices a1, . . . , a5 of size (K,K), and vertices d1
and d2 of size (B/2, B). The tree TS is as shown by the thick lines in Fig. 2: vertex c is
adjacent to all the vi’s, uj’s, a’s, and d’s; and each vertex uj is adjacent to bj , �j , and rj .

We claim that an instance S of 3-PARTITION is feasible if and only if TS can be
realized with the given box sizes. It is easy to see that TS can be realized if S is feasible:
we simply partition vertices v1, . . . , vn into groups of three (by vertices u0, . . . , um) in
the same way as their widths s1, . . . , sn are partitioned in groups of three; see Fig. 2.
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For the other direction, consider any realization of TS . Let us refer to the box of some
vertex v also as v. Since c touches the five large squares a1, . . . , a5, at least three sides
of c are partially covered by some ak and at least one horizontal side of c is completely
covered by some ak. Since c has height 1/2 only, but touches all the vi’s and uj’s and d1
and d2 (each of height B > 1), all these boxes must touch c on its free horizontal side,
say, the bottom side. Furthermore, the sum of the widths of the boxes exactly matches
the width of c; so they must pack side by side in some order.

This means that the only free boundary of uj is at the bottom, and uj must make
contact there with bj , �j , and rj . This is only possible if bj is placed directly beneath
uj , and �j and rj make contact with the bottom corners of uj . (They need not appear to
the left and right as shown in Fig. 2.) Because the sum of the widths of the bj’s, �j’s, and
rj’s exactly matches the width of c, they must pack side by side, and therefore the uj’s
are spaced distance B apart. There is a gap of width B/2 before the first uj and after
the last uj . These gaps are too wide for one box in v1, . . . , vn and too small for two of
them since their widths are contained in the open interval (B/4, B/2). Therefore, the
boxes d1 and d2 must occupy these gaps, and the boxes v1, . . . , vn are packed into m
groups each of width B, as required. ��
In case rectangles may be rotated, both proofs still hold: the weak NP-hardness proof for
stars still works because all boxes are squares–except the central one. The strong NP-
hardness for trees also still holds, basically because the boxes a1, . . . , a5 are squares
and because all boxes (except c) are at least as high as wide (and at least as wide as c is
high), so there is no advantage to rotating any box.

Although CROWN is NP-hard in general, on some graph classes the problem can
be solved efficiently. In the remainder of this section, we investigate such a class: irre-
ducible triangulations. We also consider a restricted variant of CROWN: HIER-CROWN.

2.1 The CROWN Problem on Irreducible Triangulations

A box representation is called a rectangular dual if the union of all rectangles is again
a rectangle whose boundary is formed by exactly four rectangles. A graph G admits
a rectangular dual if and only if G is planar, internally triangulated, has a quadrangu-
lar outer face and does not contain separating triangles [2]. Such graphs are known as
irreducible triangulations. The four outer vertices of an irreducible triangulation are de-
noted by vN , vE , vS , vW in clockwise order around the outer quadrangle. An irreducible
triangulation G may have exponentially many rectangular duals. Any rectangular dual
of G, however, can be built up by placing one rectangle at a time, always keeping the
union of the placed rectangles in staircase shape.

Theorem 2. CROWN on irreducible triangulations can be solved in linear time.

Proof (sketch). The algorithm greedily builds up the box representation, similarly to
an algorithm for edge-proportional rectangular duals [19]. We define a concavity as
a point on the boundary of the so-far constructed representation, which is a bottom-
right or top-left corner of some rectangle. Start with a vertical and a horizontal ray
emerging from the same point p, as placeholders for the right side of vW and the top
side of vS , respectively. Then at each step consider a concavity, with p as the initial one.
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Fig. 3. Left: starting configuration with rays vS and vW . Center: representation at an intermediate
step: vertex w fits into concavity p and results in a staircase, vertex v fits into concavity s but does
not result in a staircase. Adding box w to the representation introduces a new concavity q and
allows wider boxes to be placed at r. Right: no box can be placed, so the algorithm terminates.

Since each concavity p is contained in exactly two rectangles, there exists a unique
rectangle Rp that is yet to be placed and has to touch both these rectangles. If by adding
Rp we still have a staircase shape representation, then we do so. If no such rectangle
can be added, we conclude that G is not realizable; see Fig. 3. The complete proof is in
the full version [1]. ��

2.2 The HIER-CROWN Problem

The HIER-CROWN problem is a restricted variant of the CROWN problem that can be
used to create word clouds with a hierarchical structure; see Fig. 1. The input is a
directed acyclic graph G with only one sink and with a plane embedding. The task
is to find a representation that hierarchically realizes G, meaning that for each directed
edge (v, u) in G the top of the box v is in contact with the bottom of the box u.

If the embedding of G is not fixed, the problem is NP-hard even for a tree, by an
easy adaptation of the proof of Theorem 1. (Remove the vertices a2, a3, a4, and orient
the remaining edges of TS upward according to the representation shown in Fig. 2.)
However, if we fix the embedding of the profit graph G, then HIER-CROWN can be
solved efficiently.

Theorem 3. HIER-CROWN can be solved in polynomial time.

Proof. Let G be the given profit graph, with vertex set B = {B1, . . . , Bn}, where Bi

has height hi and width wi, and B1 is the unique sink. We first check that the orientation
and embedding of G are compatible, that is, that incoming edges and outgoing edges
are consecutive in the cyclic order around each vertex.

The main idea is to set up a system of linear equations for the x- and y-coordinates
of the sides of the boxes. Let variables ti and bi represent the y-coordinates of the top
and bottom of Bi respectively, and variables �i and ri represent the x-coordinates of the
left and right of Bi, respectively. For each i = 1, . . . , n, impose the linear constraints
ti = bi + hi and ri = �i + wi. For each directed edge (Bi, Bj), impose the constraints
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ti = bj, ri ≥ �j + 1/2, and rj ≥ �i + 1/2. The last two constraints force Bi and Bj to
share some x-range of positive length in which they touch. Initialize t1 = 0.

With these equations, variables ti and bi are completely determined since every
box Bi has a directed path to B1. Furthermore, the values for ti and bi can be found
using a depth-first-search of G starting from B1.

The x-coordinates are not yet determined and depend on the horizontal order of the
boxes, which can be established as follows. We scan the boxes from top to bottom, keep-
ing track of the left-to-right order of boxes intersected by a horizontal line that sweeps
from y = 0 downwards. Initially the line is at y = 0 and intersects only B1. When the
line reaches the bottom of a box B, we replace B in the left-to-right order by all its pre-
decessors in G, using the order given by the plane embedding. In case multiple boxes
end at the same y-coordinate, we make the update for all of them. Whenever boxes Ba

andBb appear consecutively in the left-to-right order, we impose the constraint ra ≤ �b.
The scan can be performed in O(n log n) time using a priority queue to determine

which boxes in the current left-to-right order have maximum bi value. The resulting
system of equations has size O(n) (because the constraints correspond to edges of a
planar graph). It is straightforward to verify that the system of equations has a solution
if and only if there is a representation of the boxes that hierarchically realizes G. The
constraints define a linear program (LP) that can be solved efficiently. (A feasible solu-
tion can be found faster than with an LP, but we omit the details in this paper.) ��
We can show that HIER-CROWN becomes weakly NP-complete if rectangles may be
rotated, by a simple reduction from SUBSET SUM (for details, see the full version [1]).

3 The MAX-CROWN Problem

In this section, we study approximation algorithms for MAX-CROWN and consider an
extremal variant of the problem.

3.1 Approximation Algorithms

We present approximation algorithms for MAX-CROWN restricted to certain graph
classes. Our basic building blocks are an approximation algorithm for stars and an ex-
act algorithm for cycles. Our general technique is to find a collection of disjoint stars
or cycles in a graph. We begin with stars, using a reduction to the MAXIMUM GENER-
ALIZED ASSIGNMENT PROBLEM (GAP) defined as follows: Given a set of bins with
capacity constraints and a set of items that may have different sizes and values in each
bin, pack a maximum-value subset of items into the bins. It is known that the problem
is NP-hard (KNAPSACK and BIN PACKING are special cases of GAP), and there exists
a (1− 1/e)-approximation algorithm [10]. In the remainder, we assume that there is an
α-approximation algorithm for GAP, setting α = 1− 1/e > 0.632.

Theorem 4. There exists an α-approximation algorithm for MAX-CROWN on stars.

Proof. We can solve instances with n < 5 by brute force exactly, so let’s assume that
n ≥ 5. Let B1 denote the box corresponding to the center of the star. Given an optimal
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Fig. 4. A solution to an instance of MAX-CROWN whose profit graph is a star with center B1

solution to MAX-CROWN, we can modify it (by sliding boxes along the sides of B1)
such that there are four boxes B2, B3, B4, B5 whose contact with B1 has length exactly
1/2. In particular, each of these boxes touches exactly one corner of B1. The problem
reduces to choosing four corner boxes and the way they touch B1, and assigning the
remaining boxes to one of the sides of B1; see Fig. 4.

Each corner of B1 can be touched in two different ways, via its incident horizontal
or vertical sides. Depending on the way the corners of B1 are touched, we create the
following instance of GAP. We introduce eight bins, one bin for each side of B1 with
appropriately adjusted sizes and one bin of size 1 for each corner. For i = 2, . . . , n,
the value of item Bi is the profit of the edge (B1, Bi). The size of Bi is wi for each
horizontal bin, hi for each vertical bin, and 1 for each corner bin. For each of the 16
ways the corners of B1 can be touched, we apply an α-approximation algorithm for
GAP [10]. Hence, we obtain an α-approximation for MAX-CROWN. ��
In the case where rectangles may be rotated by 90◦, the MAX-CROWN problem on a
star reduces to an easier problem, the MULTIPLE KNAPSACK PROBLEM, where every
item has the same size and value no matter which bin it is placed in. This is because, for
non-corner bins, we will always attach a rectangle B to the central rectangle of the star
using the smaller dimension of B. For the corner bins, we can try all possible choices
of which box to put into which bin. There is a PTAS for MULTIPLE KNAPSACK [3].
Therefore, there is a PTAS for MAX-CROWN on stars if we may rotate rectangles.

A star forest is a disjoint union of stars. Theorem 4 applies to a star forest since we
can combine the solutions for the disjoint stars.

Theorem 5. MAX-CROWN on the class of graphs that can be partitioned in polyno-
mial time into k star forests admits an α/k-approximation algorithm.

Proof. We partition the edges of the profit graph into k star forests, apply the approx-
imation algorithm of Theorem 4 to each of them, and take the best of the k solutions.
We claim that this (polynomial-time) method yields the desired approximation factor.

Consider an optimum solution, and let Wopt be its profit. By the pigeon-hole prin-
ciple, our partition of the profit graph contains a star forest F that realizes a profit of
at least Wopt/k in the optimum solution. Hence, on F , the approximation algorithm of
Theorem 4 achieves a profit of at least αWopt/k. ��
Corollary 1. MAX-CROWN admits an α/2-approximation algorithm on trees and an
α/5-approximation algorithm on planar graphs.

Proof. It is easy to partition any tree into two star forests in linear time. Moreover, it is
known that every planar graph has star arboricity at most 5, that is, it can be partitioned
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into at most five star forests, and such a partition can be found in polynomial time [13].
The results now follow directly from Theorem 5. ��
Our algorithms involve approximating a number of GAP instances, using the LP-based
algorithm of Fleischer et al. [10]. Because of this, the runtime of our approximation
algorithms is dominated by the runtime of solving linear programs.

Our star forest partition method is possibly not optimal. Nguyen et al. [17] show
how to find a star forest of an arbitrary weighted graph carrying at least half of the
profits of an optimal star forest in polynomial time. We cannot, however, guarantee
that the approximation of the optimal star forest carries a positive fraction of the total
profit in an optimal solution to MAX-CROWN. Hence, approximating MAX-CROWN for
general graphs remains an open problem. As a first step into this direction, we present
a constant-factor approximation for profit graphs with bounded maximum degree. First
we need the following lemma.

Lemma 1. Given n ≥ 3 boxes and an n-cycle defined on them, we can find a represen-
tation realizing the n-cycle in linear time.

Proof. Let C = (B1, . . . , Bn) be the given cycle, let W be the sum of all the widths,
that is, W =

∑
i wi, and let t be the maximum index such that

∑
i≤t wi < W/2. We

place B1, . . . , Bt in this order side by side from left to right with their bottom sides
on a horizontal line h; see Fig. 5. We call this the top channel. Starting at the same
point on h, we place Bn, Bn−1, . . . , Bt+2 in this order side by side from left to right
with their top sides on h. We call this the bottom channel. Note that B1 and Bn are
in contact. It remains to place Bt+1 in contact with Bt and Bt+2. It is easy to see that
the following works: add Bt+1 to the channel of minimum width or, in case of a tie,
place Bt straddling the line h; see Fig. 5. ��
Following the idea of Theorem 5, we can approximate MAX-CROWN by applying
Lemma 1 to a partition of the profit graph into sets of disjoint cycles.

Theorem 6. MAX-CROWN on the class of graphs that can be partitioned into k sets of
disjoint cycles (in polynomial time) admits a (polynomial-time) algorithm that achieves
total profit at least 1

k

∑
i�=j pij . In particular, there is a 1/k-approximation algorithm

for MAX-CROWN on this graph class.

Corollary 2. MAX-CROWN on graphs of maximum degree Δ admits a 2/�Δ + 1�-
approximation.

Proof. As Peterson [20] shows, the edges of any graph of maximum degree Δ can be
covered by 	Δ/2
 sets of cycles and paths, and such sets can be found in polynomial
time. The result now follows from Theorem 6. ��

3.2 An Extremal MAX-CROWN Problem

In the following, we bound the maximum number of contacts that can be made when
placing n boxes. It is easy to see that for n = 2, 3, 4 any set of boxes allows 2n − 3
contacts. For larger n we have:
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Theorem 7. For n ≥ 7 and any set of n boxes, the boxes can be placed in the plane to
realize 2n− 2 contacts. For some sets of boxes this is the best possible.

Proof. Let B1, . . . , Bn be any set of boxes. First we place k ∈ {5, 6, 7} boxes to make
2(k − 1) contacts, and then place the remaining boxes to make 2 contacts each for a
total of 2(k − 1) + 2(n − k) = 2n − 2 contacts. Let B1 and B2 be the boxes with
largest height, and B3 and B4 be the boxes with largest width. Let B5 be any further
box. Place the five boxes as in Fig. 6. This realizes 8 contacts, unless one or two of
B1, B2 has the same height as B5, in which case we consider one or two further boxes
B6, B7 and represent in total 10 or 12 contacts as in Fig. 6.

Place the remaining boxes one by one as in the proof of Lemma 1 along the horizon-
tal line between B2 and B3. Then each remaining box makes two new contacts.

Next we describe a set of n boxes for which the maximum number of contacts is 2n−
2. Let Bi be a square box of side length 2i. Consider any placement of the boxes and
partition the contacts into the set of horizontal contacts and the set of vertical contacts.
From the side lengths of the boxes, it follows that neither set of contacts contains a
cycle. Thus each set of contacts has size at most n− 1 for a total of 2n− 2. ��

4 The AREA-CROWN Problem

The same profit graph can often be realized by different box representations, not all
of which are equally useful or visually appealing when viewed as word clouds. In this
section we consider the AREA-CROWN problem and show that finding a “compact”
representation that fits into a small bounding box is another NP-hard problem.

The reduction is from the (strongly) NP-hard problem 2D BOX PACKING: The input
is a set R of n rectangles with width and height functions w : R → N and h : R → N,
and a box of width W and height H . All the input numbers are bounded by some
polynomial in n. The task is to pack the given rectangles into the box. The problem is
known to be NP-complete even if the box is a square, that is, if W = H [16].

The BOX PACKING problem is equivalent to AREA-CROWN when the profit graph
has no edges. Edges in the profit graph, however, impose additional constraints on the
representation, which may make AREA-CROWN easier for certain (simple) profit graph
classes. In the full version [1], we show that this is not the case.

Theorem 8. AREA-CROWN is (strongly) NP-hard even on paths.

B1 B2B3 B4 B5
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B5
B1

B2

B3

B4

B5B1
B2

B3

B4

B6

B5B1 B2

B3

B4

B6

B7

Fig. 5. Example for Lemma 1:
Realizing the 10-cycle (B1, . . . , B10)

Fig. 6. Examples for Theorem 7: 8, 9, or 10 adjacencies
with 5, 6, or 7 boxes, respectively
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5 Experimental Results

We implemented two new methods for constructing word clouds: the STAR FOREST al-
gorithm based on extracting star forests (Corollary 1) and the CYCLE COVER algorithm
based on decomposing edges of a graph into cycle covers (Theorem 6). We compared
the two algorithms to the following existing methods: WORDLE [23], CPDWCV [5],
and SEAM CARVING [24]. Our dataset consists of 120 Wikipedia documents, each with
400 words or more. Frome these, we removed stop words (e.g., “the”) and constructed
profit graphs G50 and G100 for the 50 and 100 most frequent words, respectively. We
set profits using the so-called Latent Semantic Analysis [6] based on the co-occurrence
of these words within the same sentence. For details, see the full version [1].

We compare the percentage of realized profit in the box representations. Since STAR

FOREST handles planar profit graphs, we first extracted maximal planar subgraphs of
the profit graphs and then applied the algorithm the the planar subgraphs. The percent-
age of realized profit is presented in the table below. Our results indicate that, in terms
of the realized profit, CYCLE COVER outperforms existing approaches, realizing more
than 17% (13%) of the total profit of graphs with 50 (100) vertices, that is, 45% (55%)
more than the second best known heuristic, CPDWCV. On the other hand, existing al-
gorithms may perform better in terms of compactness, aspect ratio, and other aesthetic
criteria; we leave a deeper comparison of word cloud algorithms to the future.

Algorithm Realized Profit of G50 Realized Profit of G100

WORDLE [23] 3.4% 2.2%
CPDWCV [5] 12.2% 8.9%
SEAM CARVING [24] 7.4% 5.2%
STAR FOREST 11.4% 8.2%
CYCLE COVER 17.8% 13.8%

6 Conclusions and Future Work

We formulated the Contact Representation of Word Networks (CROWN) problem, mo-
tivated by the desire to provide theoretical guarantees for semantics-preserving word
cloud visualization. We showed that some variants of CROWN are NP-hard, gave ef-
ficient algorithms for others, and presented approximation algorithms. A natural open
problem is to find an approximation algorithm for general graphs with arbitrary profits.

Acknowledgments. This work began at Dagstuhl Seminar 12261. We thank organizers
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Rote.
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