
Range-capable Distributed Hash Tables
Alessandro Soro

CRS4
POLARIS

Edificio 1, 09010 PULA (CA - Italy)
+39 070 9250 261

asoro@crs4.it

Cristian Lai
CRS4

POLARIS
Edificio 1, 09010 PULA (CA - Italy)

clai@crs4.it

ABSTRACT

In this paper, we present a novel indexing data structure called
RDHT (Range capable Distributed Hash Table) derived from skip

lists and specifically designed for storing and retrieving
geographic data from a structured P2P network overlay. We have
developed RDHTs as backend for the DART search engine,
whose goal is to efficiently answer complex queries based on
semantics and geographical context of the information stored in a
P2P network. Queries are “range enabled”, in the sense opposite
of the exact matching. Range and semantic queries on location
based resources make it possible to answer questions such as

“Where is the nearest bookshop?”. RDHTs merge the robustness
and scalability of distributed hash tables with the simplicity and
self maintenance of skip lists, while providing efficient support
for range queries and proximity queries.

Categories and Subject Descriptors

E.1 [Data Structures]: Distributed Data Structures

General Terms

Algorithms, Performance.

Keywords

Distributed Hash Table, Peer to Peer, Search Engine.

1. INTRODUCTION
Distributed Hash Tables are emerging as a key technology in P2P
applications as a consequence of their robustness and scalability.

Several projects[4][7], as well as popular file sharing
applications[1][8] make use of DHTs in order to distribute the
data over a large number of peers, that contribute storage to a

community of users. In the last years the research and the
development in the P2P field has been considerable. Napster,
Gnutella2, Edonkey2K, Bit Torrent, Kademlia [15] are only a few
examples of consolidated protocols/architectures. The use of a
such shaped infrastructure in general is justified due to the most
relevant features of P2P systems, such as resistance to the
censorship, decentralization, scalability, security, etc. To

distribute data among thousand or million of peer not only means
to have a huge amount of information, but also means to make
confidence to a robust system free of restriction from a centrali
authority.

Unfortunately DHTs only support exact matching queries and thus
are not practical to support non trivial applications like geographic
or location based services. Indeed, a typical query to a geographic
based search engine will specify a geographical position and a
range, for example ‘find hotels within 10 miles from my current
position’.

The work illustrated in this paper has been conducted as part of
the DART[6] search engine. The project is focused on realize a

distribute architecture for semantics searches on the Web and the
access to personalized contents. Also the project aims at supply
position based information strictly related to a user indicated area,
so to provide spatial queries based on geo-referenced data.

An important aspect of the DART project is to stimulate the birth
of a community of users that contribute storage and CPU cycles to
the creation of a global, public index of Internet resources,
strongly centered on personalized content. Such distributed index
should support several applications, spacing over texts analysis,
retrieval of semantic labeled documents, query of spatial
referenced information, etc. While the storage system required for

this applications must be distributed to put it behind any
possibility of censorship or centralized control, the possibility of
efficiently execute range queries must be granted.

In the following sections we present a novel indexing data
structure called RDHT (Range capable Distributed Hash Table)
derived from skip lists and specifically designed for storing and
retrieving geographic data from a structured P2P overlay network,
intended as distributed geographical information systems.

The DART project has been partially funded by the Italian
Ministry of University and Scientific Research, contract grant
number 11582

2. SCENARIO
The scenario we refer to when designing the DART Network

Overlay consists of a location based service that spots items in a
distributed DB, based on the geographical position of the user.
Users act both as information providers and consumers: for
example a GPS-enabled computer installed on a car or on a boat
will query the network for possible dangers within a given range
from its position. At the same time it stores on the network
information about potential dangers that it can register along the
path, based on simple events that can easily be translated in rules,

such as: the activation of the airbag implies a potential danger for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

other vehicles that are approaching my geographical position.
This scenario presumes the ability of clients to run queries based
on the geographical position, interval and a class of entities, but,
as a starting point, we have reduced the problem to that of
querying a distributed DB that stores sorted lists of integer values.

The first prototype we have implemented shows a web interface
based on Google Maps API [9], which allows the user to select a

Figure 1

region and to submit query to the system on the specified range.

In Figure 1 is shown the response to the query bounds by the red
rectangle.

3. DHT for Geographical IR
The DART research project is aimed at designing an architecture
and deploying a toolkit to store and retrieve a global, public index
of Internet location based resources. For simplicity at the moment
we consider only GPS coordinates. DART users are supposed to
contribute to the system in terms of storage and CPU cycles, but

also sharing information as P2P applications use to share assets.
As a backend to DART, an efficient, robust and scalable
distributed filesystem is required and Distributed Hash Tables
over a P2P overlay have extensively proven to meet these
requirements.

The most important features related to DHTs can in fact be
summarized as follow:

• efficiency and scalability, the number of messages
exchanged to route a query to its destination is
O(log(N)), where N is the total number of nodes;

• no maintenance, no administrative operations are
required, no central authority or complex process is
required to maintain, balance or fix the distributed data
structure;

• simplicity, the algorithms behind distributed hash tables
are relatively simple to understand and implement;

• robustness, the ability to survive massive failures is a
key aspect when deploying largely distributed
applications, such as file sharing applications;

DHTs can store and retrieve efficiently a huge amount of
information, but queries require an exact knowledge of the
resource ID (the key).

This excludes many applications, in which the key is known only
approximately, e.g. a geographical position, or is known to fall

within a range e.g. a time interval. The DART project defines a
DART Network Overlay, whose goal is to support a wide variety
of distributed applications, by providing a flexible, efficient, and
robust distributed filesystem, capable of range queries.

We call this filesystem RDHT (Range capable Distributed Hash
Table): its basic idea is derived from skip lists[16], though in
RDHT we lose the concept of different levels of pointers, in

Figure 2

exchange for a self organized backbone. The storage of index
information, as well as any other operation, is built on top of the
Kademlia protocol.

Note that range queries only make sense if the items stored can be
ordered with respect to one or more attributes. RDHTs store
simple integer values. The transformation from Objects attributes

to integer values is application specific: for certain applications a
lexicographic order, resulting in a list can be applied. In
geographic applications linearization is often used to represent n-
dimensional coordinates. Error! Reference source not found.
shows the way geographical coordinates can be linearized using a
z-curve [11], i.e. interleaving the bits of the X and Y (or longitude
and latitude) coordinates of the spots to obtain a single integer
value; Items’ coordinates are represented as an integer value, that

is a point in the z-curve, and the limits of a query for a rectangular
region are translated to a linear interval of the z-curve itself. This
greatly simplifies the store and retrieve operations, reducing the
problem to that of storing and querying sorted integer values.
Note that in contrast to lexicographic ordering, points that are
close in the map get generally translated to close integer values,
anomalies must be filtered from the result set.

4. RANGE-CAPABLE DHTs
The basic idea behind RDHTs is to use the underlying DHT to
store index information as well as the data themselves. This is
analogous to other approaches, for example [17], but, RDHTs
require less effort in organizing and maintaining the index.

Whenever a new value V is inserted in the RDHT, two new
pointers are registered, bounding V to its nearest neighbors
succ(V) and pred(V). In this way a chain of pointers get stored in
the DHT to guide lookup operations. Index information for value

V is stored under the key hash(V). For example: from the initial
list represented in Figure 331.

Figure 3

where the arrow p1 represents index information stored under the
key hash(V1). Inserting the new item V3, whose value is greater
than V1 and less than V2 will result in the configuration shown in
Figure 442:

Figure 4

where the pointer p1 remains valid, but in addition the pointers p2
and p3 get stored. In this way older values and pointers are used
as a backbone to guide lookup operations: as new values are
stored, pointer p1 get stretched and can be exploited to make long
jumps skipping large portions of the RDHTs. The result of
inserting the new values V4 (V3 < V4 < V2) and then V5 (V3 <
V5 < V4) is shown in Figure 553 and Figure 664.

Figure 5

Figure 6

Again the pointer p3 and p4 have been stretched and four new
pointers have been inserted: p4, p5, p6 and p7. Note that no
removal or update is necessary when inserting a new value. Old
pointers remain valid in that they don’t link each item to its next
but only represent a predecessor/successor relationship. Each

insert operation requires storing a fixed amount of information, so
the total storage required by the index structure for a list of N
items is O(N).

4.1 Primitive Operations
Primitive operations require exchanging a moderate amount of
messages. A so shaped data structure requires basic primitive
operations, such as lookup, nearest, insert and range. To
efficiently implement nearest and lookup operations, backward

pointers must be stored in addition to forward pointers illustrated
so far. Low level primitives relative to the DHT operations, like
join, ping, ecc. are implemented in the Kademlia network overlay,
and will not be described here.

Lookup means discover an item stored in the data structure. It
starts from a known value and executes several lookup operations
on the underlying DHT, in order to fetch index information. For
example to lookup the item V4, starting at item V1, the systems
fetches all the pointers stored under key hash(V1), chooses the
longest possible jump that don’t overshoots V4 and iterates, until
a pointer to V4 is found. If no such pointer exists the lookup

operation will fail. Of course using a fixed starting points for
lookup operations constitutes a bottleneck and a single point of

failure, unacceptable for our application. This can be avoided by
storing backward pointers so that a lookup operation can start at
any known item (chosen at random) and proceed forward or
backward as needed.

The items (Vn- and Vn+) nearest to a given value Vn can be
found executing a lookup operation to Vn. If Vn doesn’t exist the
lookup fails after retrieving Vn- and Vn+, the shortest pointer

registered under hash(Vn-). If Vn exists, Vn- is the shortest
backward jump and Vn+ the shortest forward jump registerd
under hash(Vn).

To insert a new value Vn the system must at first execute a
nearest operation. The operation will fetch the items Vn- and Vn+
that must be linked to insert the new one. When an insert is
performed the system stores four pointers that link Vn
bidirectionally to Vn- and Vn+. Additionally a long pointer can be
stored that links the item Vn to the item where the lookup started
from. With this addition long pointers will be distributed equally
over the population of the RDHT, and older pointers will not be
overloaded with queries.

With these primitives a range query in the interval (lb, ub) can be
executed quite trivially through a succession of lookup and

nearest operations, that step through the RDHT forward or
backward, beginning at the lower or upper bound of the interval.
Alternatively a range query can be executed searching for the
items nearest to the median(lb, ub), and then repeating this
operation recursively over the two subintervals until no new
element is discovered or a given grain is reached. Note that this
second strategy can be easily parallelized.

Note that there is no remove primitive, once stored an item cannot
be deleted. This implies that malicious removal of data is not
possible. How this affects the performances of the system, the
flexibility of the protocol and the semantics of the primitives is
beyond the scope of this paper.

5. IMPLEMENTATION
We have developed a prototype implementation of the DART
Network overlay, written in Python and based on Khashmir[12],
an implementation of the Kademlia protocol.

Preliminary measurements, executed in a test environment, show
the goodness of the architecture. As illustrated in Figure 5, with a
RDHT of 10000 items, distributed across 100 peers, we need

between 6 and 8 iterations to complete a store/lookup operation,
each iteration consisting of a Kademlia lookup that in turn
requires ~log(100) messages to succeed. At the moment we

Figure 7

obtain this results with items generated and stored randomly.

5.1 Known Issues
The efficiency of Insert and Lookup operations strongly depends

on the values to be inserted (almost) in random order. Our insight
is that the case of a long sequence of consecutive values inserted
in normal operation is very unlikely to happen for two reasons:
first of all the system is intended to be used concurrently by many
peers, that continuously store values in the RDHT; additionally
the linearization algorithm will scramble the values stored
(referring to Error! Reference source not found., an item
moving in the map will not store sequential values, unless it

follows exactly the z-curve).The system is still a prototype, deep
testing in a truly distributed environment and under full load is
still to be done. Particular attention will be paid to load balancing,
both with respect to storage distribution and query resolution
effort.

6. RELATED WORK
The application of the P2P paradigm to GIS is targeted at getting
rid of the typical problems of centralized systems, such as

network overload, single point of failure, censorship, lack of
scalability. Community oriented architectures for geographic
based services, often referred to as geocollaboration frameworks,
such as DART are an open and emerging field in distributed
computing and GIS, see for example[2][3][10][13][14], and their
applications spread from emergency management to amusement.

Several solutions have been proposed to face the problem of range
queries over P2P systems, each one with its own strengths and
weaknesses. Unstructured P2P systems address the problem of
range flooding queries to all peers in the network, thus requiring
O(N) messages. More scalable solutions require to store a

distributed indexing data structure in the P2P network itself, and
use this to guide range queries. P-Trees [5] consist of distributing
a B+ tree on a P2P network, storing at each peer a fraction of the
overall tree. The integrity of the P-Tree is granted by periodically
executing a ping/stabilization process, that checks and recovers
nodes from failure.

Prefix Hash Trees [17] represent an efficient a robust distributed
data structure and can be implemented over a generic DHT
without modifying the routing algorithms, but the insert and
delete operations can result in splitting/merging nodes, thus
requiring complex balancing operations. PHTs have been applied

to location based services in Placelab[13], a framework for device
positioning using a distributed index of radio beacons.

7. Ongoing activities
The challenge to make range queries in distributed systems is
becoming a need due the direction followed by information
retrieval research. The preliminary bases crated by this work are
growing toward information based architectures strictly centered
on location based features.

Most of the obstacles encountered up to now impose to consider
the kind of information indexed in a such structured architecture.

The case of integer values (or integer assimilated values in the
case of GPS coordinates) is of course a simplification. Most
interesting is take into account more structured information tagged
with metadata. Eventually will be interesting to analyze results on
research in range queries in semantic arranged information.

8. REFERENCES
[1] Azureus - Java BitTorrent Client.

http://azureus.sourceforge.net/

[2] Balram, S., Dragicevic, S. Collaborative Geographic
Information Systems: Origins, Boundaries and Structures.

[3] Carboni, D., Sanna, S., Zanarini, P., GeoPix: Image Retrieval
on the Geo Web, from Camera Click to Mouse Click. In

Proceedings of MobileHCI'06, September 12–15, 2006,
Helsinki, Finland, ACM Press.

[4] Chawathe, Y., LaMarca, A., Ramabhadhran, S., Ratnasamy,

S., Hellerstein, J., Shenker, S., A Case Study in Building
Layered DHT Applications. IRS-TR-05-001 Jan 2005

[5] Crainiceanu, A., et Al Querying Peer-toPeer Networks Using
P-Trees. In Proceedings of WebDB Workshop (2004).

[6] DART – Distributed Agent Based Retrieval Tools. Soro A.,
Paddeu G. and Armano G (eds.) (to be published)

[7] Druschel, P., and Rowstron, A. Storage Management and
Caching in PAST, a Large-scale, Persistent Peer-to-peer

Storage Utility. In Proceedings of the 18th ACM Symposium

on Operating Systems Principles (SOSP 2001) Lake Louise,
AB, Canada, October 2001.

[8] eDonkey2000 - Overnet. http://www.edonkey2000.com/

[9] Google Maps, http://maps.google.com/

[10] Guan, J.H., Zhou, S.G., Wang, L.C., Bian, F.L., Peer to Peer
Based GIS Web Services. Proceedings of the XXth ISPRS
Congress, July 2004 Istanbul, Turkey

[11] Jagadish, H. V. Linear clustering of objects with multiple
attributes. In Proceedings of ACM SIGMOD International

Conference on Management of Data (SIGMOD’90) May
1990, pp. 332–342.

[12] Khashmir. http://khashmir.sourceforge.net/

[13] Lamarca et. Al. Place lab: Device positioning using radio
beacons in the wild. Technical Report IRS-TR-04-016, Intel
Research Seattle. Sept. 2004.

[14] MacEachren, A. M., Cai, G., Sharma, R., Rauschert, I.,
Brewer, I., Bolelli, L., Shaparenko, B., Fuhrmann, S., Wang,
H. Enabling Collaborative Geoinformation Access and

Decision-Making Through a Natural, Multimodal Interface.
International Journal of Geographical Information Science

[15] Mayamounkov, P. Maziers, D. Kademlia: A peer-to-peer

information system based on the xor metric. In Proceedings

of the 1st International Workshop on Peer-to-Peer Systems.
2002.

[16] Pugh, W., Skip Lists: A probabilistic alternative to Balanced
Trees. Workshop on Algorithms and Data Structures. 1990

[17] Ramabhadran, S., Ratnasamy, S., Hellerstein, J., Shenker, S
Prefix Hash Tree - An Indexing Data Structure over
Distributed Hash Tables. 2004

