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1. EXTENDED ABSTRACT

Unlike related work in GIS and spatial analysis, there has
been little study of the use and effectiveness of different spa-
tial approximations for GIR. Clearly, no one approach will
apply to all types of geographic information resources or dig-
ital libraries. The need to retrieve and evaluate information
objects based on their geospatial characteristics increases as
the geographical “aboutness” of the objects increase, e.g. a
guidebook vs. a digital geographic data set of invasive plant
species. Moreover, geospatial ranking methods are becom-
ing increasingly important as the Sllpply of and demand for Figure 1: MBRs (thin lines) and Convex Hulls for

geographic information grows. The quality of geospatial ap- the State of California and the City of San Jose.
proximations in GIR, i.e. how closely they represent the

original objects, constrains how accurately and effectively
these objects can be retrieved and ranked[8].

We have been exploring these issues and have developed
some new algorithms for ranked retrieval of georeferenced
objects. We have also been examining the indexing methods
that can be employed for materials with geographic content
or associations. We have been doing a comparative analy-
sis of several GIR algorithms and evaluating their relative
performance using a test collection of geospatial metadata,
derived from the California Environmental Information Cat-
alog (CEIC — http://ceres.ca.gov/catalog). This discussion
is based on that work.

the geographic extent), Spatial reference system (projection
and coordinate system information, Spatial Representation
model (vector, raster), Spatial features (type and quantity)
and Spatial data quality (accuracy, completeness, lineage,
and sources).

However, the only geospatial element required by the FGDC
Standard is Spatial Domain. While this element permits
complex spatial representations, only a coordinate pair that
defines a minimum bounding rectangle (MBR) of the object
is required.

As can be seen in Figure 1, MBRs provide a compressed,

11 GEOSana' M etadata ?bs.trac.t approximation of a spatial obj(?ct. The represen-
ation is conceptually powerful because it evokes a printed
Geographic digital libraries typically use geospatial meta- map. Its simplicity, computational efficiency, and storage
data to provide surrogate representations of geographic re- advantages make it the most commonly used spatial ap-
sources that encode the structure and content of digital ge- proximation[3]. Yet, the MBR has obvious weaknesses when
ographic data to support identification, discovery, evalua- representing diagonal, irregular, non-convex, or multi-part
tion, and understanding. This metadata is vital for most regions[11]. MBRs over-estimate area, misrepresent shape,
geographic data because, as non-textual, abstract represen- and fail to capture the distribution of the data within them-
tations of complex phenomena, they cannot be effectively selves, leading to “false positives” in GIR matching.
and appropriately used without it. Other spatial approximations, such as the minimum bound-
In this study we used metadata based on the FGDC Stan- ing ellipse, minimum bounding N-corner convex polygon,
dard, which was created specifically to describe digital geospa- and convex hull, have been investigated in the context of
tial data, but which has also been applied to paper maps, spatial databases and GIS applications, but not for GIR,
air photos, atlases, environmental impact statements, and where the MBR still represents the state of the art. In
other geographically related materials. The elements in this searching, a query region representing the user’s area of in-
data that concern the geospatial characteristics of the data terest may be defined by 1) Entering geographic coordinates
include: Spatial domain (geographic coordinates defining for a point or bounding box, 2) Using a graphical map in-
the data’s extent), Place names (qualitative descriptors of terface to zoom in to, click on, or draw a polygon, typically

a bounding box, around the area of interest and 3) Entering

Convriaht is held by the author/owner a place name or selecting it from a list.
SIGpIyR ,904 July 25—%18, 2004, Sheffi dd; UK. The first two methods result in the delineation of a coordinate-

ACM 0-89791-88-6/97/05. based query region. The third uses a digital gazetteer to ob-



Reference

Hill, 1990[6]

Walker et al, 1992[12]
Beard and Sharma, 1997(2]

Formula |

Range = 2Q¥:C

Range = MIN (%, %)
Case 1: Q contains C
Range = %

Case 2: Q and C overlap

_ O/Q%
Range = (170/0)%0+100

Case 3: Q contained in C

Range = %

Where:

@ = area of query region

C = area of candidate GIO
O = area of overlap for G,C

Range (for all):
0 = no similarity

1 = identical

Table 1: Methods for computing spatial similarity.

tain coordinate representations for named places. Regard-
less of the method used, a query region is often represented
internally as a simple bounding rectangle[7]. For geospa-
tial searches, the query region is compared with MBRs of
all candidate geographic information objects (GIOs) in the
digital library using polygon-polygon geometric operations.
If there is overlap between the query and the GIO regions,
the GIO is considered a match.

1.2 Similarity Measures and Spatial Ranking

GIR ranking methods are based on quantifying the simi-
larity between the query and a GIO in the collection. This
similarity “score” can be interpreted as an estimate of the
relevance, or utility, of a candidate GIO for a user’s infor-
mation need. There are three basic approaches to spatial
similarity measures and ranking:

Method 1: Simple Overlap. Candidate geographic infor-
mation objects (or GIOs) that have any overlap with
the query region are retrieved.

Method 2: Topological Overlap. Spatial searches are con-

strained to only those candidate GIOs that: a) are
completely contained within, b) overlap, or c) contain
the query region. Each category is exclusive and all
retrieved items are considered relevant.

Method 3: Extent of Overlap. A spatial similarity score
is derived from the extent of overlap between a can-
didate GIO and the query region. The greater the
overlap, the greater the assumed relevance of the can-
didate GIO to the query. A variety of spatial scores
based on overlap are discussed in the literature (Hill,
1990; Walker et al, 1992; Beard and Sharma, 1997)
and presented in Table 1.

The simple and topological overlap approaches are most
commonly used in digital libraries where the geographic ob-
jects of interest are represented by MBRs. Retrieval al-
gorithms based on MBRs are easy to implement and are
supported by the GEO profile of the Z39.50 information
retrieval protocol[10]. However, the Boolean matching cri-
terion does not allow for spatial ranking and thus inhibits
good retrieval performance [1](p. 26), especially as result
sets grow in size. Classifying retrieved candidates based on
topological relationships (e.g., contains, overlaps, contained
within), as in method 2, is a first step in discriminating

among the results, but it doesn’t speak directly to the issue
of relevance. Moreover, the burden is on the user to under-
stand these relationships and how they impact a geospatial
search. There has been very limited research on the effec-
tiveness of spatial ranking with Hill[6] presenting the only
empirical data and evaluation.

Clearly, many research questions concerning spatial rank-
ing need to be investigated, including ways in which it can
be implemented and evaluated. These questions become in-
creasing critical as the amount of geographic information in
digital libraries, and thus the size of result sets, continues to
grow.

1.3 Our Approach: Probabilistic Spatial Rank
Ing

Maron and Kuhns[9] first introduced the idea that, given
the imprecise and incomplete ways in which a user’s infor-
mation need is represented by a query and an information
object by its indexing, relevance should be approached prob-
abilistically. This is especially true for geographic informa-
tion retrieval since all geographic information objects are
abstract, compressed representations of real world phenom-
ena that contain some degree of error and uncertainty[5].

In the logistic regression (LR) model of IR[4], the esti-
mated probability of relevance for a particular query and a
particular record in the database P(R | @, D) is calculated
as the ”log odds” of relevance logO(R | @Q,D) and con-
verted from odds to a probability. The LR model provides
estimates for a set of coefficients, ¢;, associated with a set of
S statistics, X;, derived from the query and database, such
that:

s
logO(R | Q,D) = co ZCiXi (1)

=1
where cg is the intercept term of the regression. The spatial
ranking, or probability of relevance, can then be given as:
elog O(R|Q,D)

P(RIQ.D) = T —omam (2)
For this study, the geospatial characterics, i.e. explanatory
statistics or feature variables, explored in the logistic regres-
sion model are:

X, = area of overlap(query region, candidate GIO) / area
of query region

Xo = area of overlap(query region, candidate GIO) / area
of candidate GIO

X3 = 1 - abs(fraction of query region that is onshore - frac-
tion of candidate GIO that is onshore)

Like the spatial similarity measures presented in Table 1, X
and X5 are based on the extent of the area of overlap and
non-overlap between the query and candidate GIO regions.
X3 requires a bit more explanation. As noted in Hill[6] ge-
ographic areas that are near a coastline can be problematic
when approximated by simplified geometries like the MBR.
The MBR for an offshore region may necessarily include
a lot of onshore area, and vice versa. We define X3 as a
“shorefactor” variable that captures the similarity between
the fraction of a query region that is onshore compared to
that of a candidate GIO region. For example, if a query re-
gion is 20% onshore and a candidate GIO region is 75% on



d =

Figure 2: Search Query (dashed rectangle) and
MBRs and Polygon Representations of Marin (NW)
and Stanislaus (E) Counties.

shore, then the shorefactor is 1 — abs(.20 — .75) = .45. Cal-
culating shorefactor is illustrated in Figure 2. Marin County
is 70% onshore, while Stanislaus County is 100% onshore.
The dashed query box in Figure 2 is 45% onshore. Thus,
the shorefactor for Marin is 1 — abs(.45 — .70) = .75 while
for Stanislaus it is 1 — abs(.45 — 1) = .45. A shorefactor of 1
indicates that both regions are either offshore or onshore. A
shorefactor approaching 0 indicates that one region is almost
completely onshore and one is almost completely offshore,
thus it allows geographic context to be integrated into the
spatial ranking process.

The shorefactor was computed by intersecting both the
query and GIO regions with a very generalized polygonal
representation of the Western USA.

The results of our analysis of these algorithms, for both
MBRs and Convex hulls has been submitted to the Euro-
pean Conference on Digital Libraries and will be describe at
the Workshop.
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