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Abstract. Movement patterns, like flocking and converging, leading and
following, are examples of high-level process knowledge derived from low-
level trajectory data. Conventional techniques for the detection of move-
ment patterns rely on centralized “omniscient” computing systems that
have global access to the trajectories of mobile entities. However, in de-
centralized spatial information processing systems, exemplified by wire-
less sensor networks, individual processing units may only have access
to local information about other individuals in their immediate spatial
vicinity. Where the individuals in such decentralized systems are mobile,
there is a need to be able to detect movement patterns using collabora-
tion between individuals, each of which possess only partial knowledge
of the global system state. This paper presents an algorithm for decen-
tralized detection of the movement pattern flock, with applications to
mobile wireless sensor networks. The algorithm’s reliability is evaluated
through testing on simulated trajectories emerging from unconstrained
random movement and correlated random walk.

1 Introduction

Movement patterns represent high-level process knowledge derived from low-
level trajectory data [1]. They are the spatiotemporal “trace” left behind by the
behavior of moving entities [2]. Examples of movement patterns include flocking

as in a “mob” of sheep [3], leading and following found in group dynamics [4, 5],
or converging and diverging of pedestrians in crowding scenarios [6, 7]. Figure 1
illustrates the movement pattern of a prototypical “flock”. The figure shows that
at a particular time instant t, four moving entities a, b, d, e are in close spatial
proximity (all lie within a circle of radius p). A commonsense interpretation
of a flock is where mobile individuals maintain such spatial proximity over an
extended period of time.

Wireless sensor networks (WSN) are increasingly applied in a dynamic con-
text. So-called mobile wireless sensor networks (mWSN) provide new opportu-
nities for monitoring and understanding coordinated movement processes, with
a wide range of applications including “smart” farming [8], emergency response
[9], robotics [10], and in-car navigation [11]. Conventional techniques for the
detection of movement patterns rely on centralized “omniscient” computing
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Fig. 1. A “flock” can be defined as a set of entities moving in spatial proximity for
some specified time period.

databases and systems that have global access to the trajectories of mobile
entities. However, in decentralized spatial information processing systems, like
mWSNs, individual processing units may only have access to local information
about the movement of other individuals in their immediate spatial vicinity. This
paper presents a decentralized algorithm that enables moving sensor nodes in
an mWSN to infer if they are part of an ongoing flocking movement pattern.
The algorithm uses only local collaboration with no central control, and relies
on qualitative spatial information (i.e., it does not require precise coordinate
information about the location of individuals). Like most tractable centralized
flock detection algorithms, our decentralized algorithm generates approximate
solutions, so the paper includes an empirical analysis of reliability of the algo-
rithm.

The remainder of this paper is structured as follows. Section 2 reviews the
relevant literature on mining movement patterns and mobile wireless sensor net-
works. Section 3 introduces the underlying model of mobility and flocking in
an mWSN. Section 4 presents the algorithm for detecting flocks in an mWSN,
termed flags. A series of simulation experiments are used to evaluate the re-
liability and efficiency of flags in Sect. 5. The paper discusses the findings of
this work in Sect. 6 and concludes with final remarks and an outlook in Sect. 7.

2 Background

2.1 Mining Movement Patterns

Various data mining techniques have been used to detect generic movement pat-
terns [2]. In 2004, Laube et al. [12] defined a collection of spatiotemporal patterns
based on direction of movement and location, e.g. flock, leadership, convergence

and encounter, and they gave algorithms to compute them efficiently. Several



subsequent articles improved the formalization and the algorithmic discovery of
such patterns.

Benkert et al. [13] modified the original definition of a flock to be a set of
entities moving close together during a time interval. The applied data mining
approach bases on projection of 2D trajectories into multidimensional space and
query operations on quadtrees. This approach results in efficient approximation
algorithms for finding such flock patterns of a fixed length and a fixed number
of flock entities, where the radius is approximated within a factor of 2. For the
same definition of flock, Gudmundsson and van Kreveld [14] showed that for any
radius approximation with factor smaller than 2, computing the longest duration
flock and the largest subset flock is NP-hard to compute and even NP-hard to
approximate within a factor of |T |1−ǫ and |A|1−ǫ, respectively, where T is the set
of all discrete time steps, A is the set of all sensor nodes, and ǫ > 0. As another
such movement pattern, Andersson et al. [15] gave a generic definition of the
pattern leadership and discussed how such leadership patterns can be computed
from a group of moving entities. This work revolves around the concept of leading
as “being followed but not following anyone else” for some time. Mining for such
leadership patterns involves a set of algorithms operating on a set of globally
preprocessed data arrays that store leading and following constellations for the
investigated set of entities. All such movement patterns have in common that
some geometrical relation of the involved moving objects has to persist over a
certain time span.

Current data mining approaches for movement patterns rely on global knowl-
edge and global data structures such as quadtrees, clustering, or preprocessed
metadata arrays. The use of such global and hence static data structures is not
well-suited for local knowledge discovery in a dynamic scenario such as a mobile
wireless sensor network.

2.2 Mobile Wireless Sensor Networks

A wireless sensor network (WSN) is a wireless network of untethered, battery
powered miniaturized computers with the ability to sense, process, and commu-
nicate information in a collaborative way [16]. A WSN monitoring a phenomenon
in geographic space is called geosensor network [17]. The tracking of mobile tar-
gets is one typical task for geosensor networks [16, 18]. Other applications have
included observing hazards [19], monitoring seismic activity [20, 21], or manag-
ing traffic flow [11]. When the sensor nodes are deployed to moving entities in a
dynamic scenario, we refer to a mobile wireless sensor network (mWSN).

Mobility presents significant challenges to the design of mWSN applications.
Maintaining static, global data structures, like connectivity graphs and routing
tables, is a particular challenge in mWSN. Even in static WSN, battery power
resources for wireless communication are extremely limited. With mWSN, con-
stantly changing network topologies and sensed data means maintaining cen-
tralized global knowledge and data structures can become highly complex and
inefficient.



As a result, some researchers have turned to decentralized algorithms (an al-
gorithm that runs in parallel on sensor nodes without any centralized control) to
address this problem. Unlike global approaches, decentralized algorithms facili-
tate fast local updating and do not require hard-to-maintain global consistency
[22]. Other researchers including [19, 23, 24, 25] have all investigated decentral-
ized knowledge maintenance and creation in spatial applications to cope with
the problems posed by mobility in mWSN. Such decentralized approaches can
also help to increase energy efficiency [16], increase scalability and robustness
[26], and reduce the potential for information overload [27, 28].

As well as challenges, mobility also presents opportunities that are begin-
ning to be exploited by some researchers. Several authors exploit the mobility

diffusion effect, that is the diffusion of information through an mWSN from
the constant hand-over of information amongst meeting moving nodes [29]. Last

encounter routing (LER), for example, computes routes purely based on a last
encounter table stored in every node. The constant rearrangement of nodes in
an mWSN can furthermore be exploited to overcome unfavorable constellations.
Grossglauser and Tse [22], for example, showed that for asynchronous appli-
cations with high delay tolerance, patience can increase efficiency with respect
to throughput capacity when messages can wait for good routes in a network
topology constantly changing due to node mobility.

In summary, the constantly changing topology amongst the moving nodes in
an mWSN challenges conventional solutions that have been developed for static
networks, but at the same time offers new options for in-network data processing
through the exploitation of the spatiotemporal nature of movement. Decentral-
ized spatial computing is well-suited to use in mWSN, capable of operating using
purely local knowledge, but still aiming to monitor geographic phenomena with
global extents [30].

3 Problem Definition

In this section, we provide a formal problem definition, including specifying
the assumptions behind decentralized processing in an mWSN, and providing a
precise definition of the meaning of “flock” in our scenario.

3.1 Preliminaries and Assumptions

An mWSN can be modeled as a set A of sensor nodes. The locations of sensor
nodes are known for an ordered set of discrete time steps T = {t1, t2, ..., tn}.
The associated movement trajectories of sensor nodes in the plane (R2) can be
modeled as a locator function l : A × T → IR2. Thus for any time t ∈ T and
sensor node a ∈ A, l(a, t) gives the coordinate location of sensor node a at time
t. The distance between two sensor nodes a, a′ ∈ A at time t ∈ T is given by
the usual Euclidean metric δ(l(a, t), l(a′, t)). In the sequel, we write δt(a, a′) to
denote the distance between two sensor nodes a and a′ at time t for conciseness,
i.e., δt(a, a′) := δ(l(a, t), l(a′, t)).



At this point a few assumptions are worth noting. Without loss of generality
we make the simplifying assumption that the set of sensor nodes is constant
over time (i.e., that no sensor nodes leave or enter the network). We model
time as a discrete domain T . This assumption also does not lead to a loss of
generality, since continuous time can always be adequately approximated in a
specific application with arbitrarily fine discrete time steps.

Nearby sensor nodes in an mWSN can wirelessly communicate with one an-
other. Thus at any given point in time, each sensor node will have a (possibly
empty) set of sensor nodes within its communication range, called its neighbor-

hood. Given a fixed communication distance c ∈ IR+, the neighborhood of a
sensor node a at time t, written nbr(a, t), is the set of sensor nodes within a’s
communication distance at time t, i.e., nbr(a, t) := {a′ ∈ A|δt(a, a′) ≤ c}. Even
though the here described flocking scenario is scale-less, a reasonable assump-
tion for communication range c in an implemented network of current standard
sensor nodes could be 30m, allowing, for instance, the detection of flocking cattle
in confinement. Note furthermore that this model assumes all sensor nodes have
constant and equal communication distances. Although this is not realistic in
actual sensor node networks, it is adequate for the purposes of this paper and
helps simplify the formal model.

One further point worth noting is that although the locator function provides
the location of each sensor node in the plane over time, our algorithm does not

assume that individual sensor nodes have access to this information. Instead the
algorithm in the next section is purely qualitative, relying instead on the neigh-
borhoods of each sensor node. These neighborhoods emerge as a consequence
of the physical characteristics of wireless communication, without the need for
quantitative positioning systems such as GPS or range-finding.

3.2 Decentralized Detection of Flocks

Laube et al. [12] use the term “flocking” to describe a collective movement
pattern expressed by a set of moving entities. In our context, the entities refer
to the moving sensor nodes of a mWSN. A flock in this sense is any set M of n

mobile sensor nodes that exhibit the same motion attribute over a given period
of time of length k ∈ IR. Speed or movement azimuth are examples of motion
attributes in this context. This initial definition is very general and does not
assume any notion of proximity, which is often associated with the term flocking
in common usage.

Adding a proximity constraint, [13] defined an (n, k, p)-flock as any set M of
n mobile sensor nodes, where for every moment in a time period of k consecutive
time steps, there exists some disk of pattern radius p that contains every sensor
node in M . More formally and in the context of our definition of mWSN above, an
(n, k, p)-flock is a set M ⊆ A such that for every time instant t ∈ {ti, ..., tj} ⊆ T ,
with j − i + 1 ≥ k, there exists a circle of radius p that spatially contains l(m, t)
for all m ∈ M .

The definition of an (n, k, p)-flock thus assumes a flock exists for a period of
k consecutive time steps single. Further, the definition assumes that the flock



is composed of n identical sensor nodes for its entire existence. As such, the
definition is quite restrictive. Current work by the authors is looking at relaxing
these constraints, and discussion of the options has already appeared in the
literature [3].

The problem we address in this paper is a decentralized detection of (n, k, p)-
flocks. Given a set of sensor nodes A, we give an algorithm that detects for
any time t all present (n, k, p)-flocks by only relying on local knowledge and
without any form of global information processing. As our main objective is to
substitute global approaches with a purely decentralized approach, we primarily
investigate the reliability of our inherently approximating decentralized solution.
In this context, reliability refers to an error analysis, quantifying the number of
correctly detected and missed patterns, respectively.

4 The FLAGS Algorithm

As part of this work we have developed a family of decentralized algorithms for
flock detection. This section presents the flags algorithm for detecting flocking
amongst geo-sensors in an mWSN. flags is designed to find flock patterns
without central control, solely by decentralized collaboration of roaming sensor
nodes, that only perceive their immediate neighbors via simple “hello” messages.

The algorithm is distributed as it runs in parallel on all sensor nodes at the
same time. The algorithm is decentralized in the sense that each sensor node a

can only access information about its immediate neighborhood, specifically the
identity of sensor nodes that are within direct one-hop communication range of
a at time t, i.e., nbr(a, t). The algorithm is dynamic, because each sensor node is
constructing new information about the existence of flocks on-the-fly as it moves
through time and space.

4.1 Handing around Maturing Information Tokens

In the flags algorithm, the collective of roaming sensor nodes administers in-
formation tokens that accumulate knowledge about flock patterns over time. A
token is simply a pair (X, j), where X is a set of sensor nodes that a knows
currently lie within a circle of radius p during the previous j time steps. The set
of tokens stored by a sensor node a at time t is denoted TokenSet(a, t).

At each time step ti the algorithm works as follows (see Algorithm 1): Each
sensor node a computes its set of neighbors nbr(a, ti) by sending and receiving
simple “hello” messages (line 1). If as current set of neighbors contains at least as
many sensor nodes as are required for detecting a flock (denoted by the threshold
ν, related to the number of nodes in the flock n and discussed further in the
next section), a will create a new token containing this information and add it
to TokenSet(a, ti) (lines 3–4). Initially, TokenSet(a, ti) is empty (line 2). Next, a

will update and check all its tokens (X, j) ∈ TokenSet(a, ti−1) from the previous
time step ti−1 (lines 5). The token (X, j) is updated by X := X ∩ nbr(a, ti) to
indicate that now only a smaller set of sensor nodes are in a’s neighborhood,



and by j := j + 1 to reflect the increased number of time steps that the sensor
nodes in the updated X have been neighbors of a (line 6). If the size of the
updated X is at least the number of sensor nodes required for detecting a flock
ν, the token is added to TokenSet(a, ti) (lines 7–8). After that, the sensor node a

inspects all tokens in TokenSet(a, ti), and whenever it finds a token of age j ≥ k

it triggers a “pattern found” message (lines 9–11). As a last but very important
step, sensor node a will exchange its set of tokens with its neighbors (line 12).
Figure 2 illustrates this procedure and Algorithm 1 formalizes it.

flags decouples knowledge about patterns from sensor nodes. Knowledge
diffuses through the network in form of knowledge collecting tokens that are
handed over between roaming sensor nodes. Even if all members of a flock re-
arrange at each consecutive step, the spatiotemporal knowledge describing that
flock is very likely to persist, because it is likely that at least one sensor node
holds an appropriate token.
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Fig. 2. Maturing knowledge tokens detect a (n = 4, k = 3, p)-flock locally when c ≈ p.
At t5 sensor node e counts the required 4 neighbors, creates a token ({a, b, d, e}, 1)
that is transmitted to all its neighbors within communication range c (little numbered
flags). At t6, after having moved and potentially rearranged, all sensor nodes check
their tokens. This time only sensor node d counts enough neighbors and ages his token
to ({a, b, d, e}, 2). All other sensor nodes drop their token. Sensor node d, however,
forwards its aged token to all its neighbors. Finally, at t7, again e counts enough
neighbors, its token ({a, b, d, e}, 3) reaches the mature age k = 3, and flags a “found
pattern”-message (crown).

4.2 Local Extrapolation

The description of the flags algorithm in the previous section was deliberately
vague about the precise value of ν, the “number of sensor nodes required for
detecting a flock.” This section explains how a correct value for ν is chosen in
the flags algorithm.



Algorithm 1: Procedure that is locally run once at each time step ti in
each sensor node a for a global value ν.

// initialization
communicate “hello” messages and construct set of neighbors nbr(a, ti)1

TokenSet(a, ti)← ∅2

// create new token if the neighborhood is large enough
if |nbr(a, ti)| ≥ ν then3

TokenSet(a, ti)← TokenSet(a, ti) ∪ {(nbr(a, ti), 1)}4

// check tokens of previous time step; if valid, update and age them
foreach (X, j) ∈ TokenSet(a, ti−1) do5

Xnew ← X ∩ nbr(a, ti)6

if |Xnew| ≥ ν then7

TokenSet(a, ti)← TokenSet(a, ti) ∪ {(Xnew, j + 1)}8

// check for patterns in current set of tokens
foreach (X, j) ∈ TokenSet(a, ti) do9

if j ≥ k then10

report “pattern found”11

// information diffusion
communicate with neighbors and update TokenSet(a, ti)12

As discussed above, the spatial awareness of the roaming sensor nodes is
constrained by their neighborhood, which in turn is constrained by their com-
munication range c. As a result, the ratio of the sensor node’s communication
range c and the pattern radius p, informally termed a node’s perception range,
plays a critical role in detecting flocks in a decentralized algorithm. Figure 3
illustrates the c

p
-ratio for c ≪ p, c ≈ p, and c ≫ p, respectively.

Constellations c ≫ p are of limited interest from a decentralized spatial
computing perspective, since in these cases there is every chance a single sensor
node will locally be able to observe the entire flock (ultimately converging toward
sensor nodes having global knowledge). By contrast, c ≈ p, and particularly
c ≪ p require strategies and heuristics allowing sensor nodes to overcome their
own limited perception range.

To correct for limited communication range, flags applies a local extrapola-
tion heuristic, by assuming that a sensor node that is part of a flock can expect
a neighborhood size that is in proportion to its perception range. In other words,
a sensor node for which c ≪ p detects a flock constellation when its neighbor-

hood contains approximately ν = c2

p2 ∗ n sensor nodes. In Fig. 3(a) the central

sensor node has a neighborhood of 5 (including itself) and hence might infer the
presence of a flock of size n = 20 having sensed the required fraction (in this
case: 1

4
) of n. Obviously, local extrapolation assumes that the density of sensor

nodes within communication range c approximates the density of sensor nodes
in the flock. In many cases this is a fair assumption. However, if the sensor nodes
cluster in only one segment of the flock area and hence some individual nodes
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Fig. 3. The c

p
-ratio rules the difficulty of detecting flock patterns in a decentralized

way, illustrated are the ratios c = 0.5p (a), c = 1p (b), and c = 2p (c) respectively.
Furthermore, even if c = 1p there is no guarantee for “seeing” all sensor nodes of a
flock, as the most central sensor node may be eccentric (d).

in the sparsely populated segments miss out on that flock, the flock as a whole
would be detected by the sensor nodes in the dense segment instead.

However, this first approximation fails as it assumes that some sensor node
is located at the exact center of the flock. Any eccentricity in the most central
node’s location means a sensor node’s communication area is expected to only
cover a smaller part of the flock area, shown in Fig. 3(d). As a result, we expect

a sensor node in a flock to sense on average slightly fewer than c2

p2 ∗ n neighbors
due to its eccentricity with respect to the center of the flock.

To correct for this effect a compensation factor E was introduced. E was
computed as the expected fraction of the flock area (a circle of radius p) that is
covered by the communication area (a circle of radius c, with center inside the
flock area) of a uniformly randomly placed sensor node inside this flock. The
formal mathematical details of the derivation of E are outside the scope of this
paper. Instead we provide a short explanation of our approach in the following
paragraph and an illustrative Fig. 4 plotting E over various c

p
ratios .

To compute E, we model the flock and communication areas as two disks in
the plane with radius p and c, respectively. The distance between the centers of
the disks is denoted by s. These disks have nonempty intersection, since s ≤ p.
We computed the area of intersection as a function A of p, c and s. We then
defined a function R of p, c and s, as the ratio of the area A and the flock area.
The expected value of this function for a uniformly randomly chosen s with
0 ≤ s ≤ p, is derived from the integral of R from s = 0 to s = p. This yields a
function E of p and c. But since R and E are defined to be ratios, E is only a
function of c

p
and not the actual values of p and c.

In the flags algorithm, the threshold ν is used as the number of sensor
nodes required for detecting a flock, defined as follows:

ν := E

(

c

p

)

· n



The effect of the compensation factor E is to reduce the number of neighbors
a sensor node that is part of a flock expects to have. As discussed above, this
reduction allows for the likelihood that, on average, sensor nodes are not ideally
situated to perceive the best possible number of neighbors.
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Fig. 4. Compensation factor E over c

p
. For c = 0.5p we get E(0.5) = 0.22, for c = 1p

the compensation factor is E(1.0) = 0.69, and for c = 2p it is E(2.0) = 1.0.

5 Evaluation

This section reports on implementation and testing of the flags algorithm. In
addition to testing the reliability of the algorithm, this section also investigates
to what degree the underlying movement regime influences the performance of
our decentralized knowledge discovery algorithm. For evaluation purposes, a sim-
ulation environment for detecting flocks in given trajectories was implemented
using the popular open source agent-based modeling toolkit repast (see Fig. 5).

5.1 Data

Simulated trajectory data was used instead of real movement observation data, as
this allows control of both the movement regime and the flocking behavior of the
moving sensor nodes in the experiments. Different movement regimes were ex-
pected to have a significant influence on the performance of the flags algorithm,
so simulated trajectories that follow well-known movement regimes were used:
unconstrained random movement (URM) and correlated random walk (CRW).
Using simulated movement observation data also had the experimental advan-
tage that the number of flocks present in the data could be easily controlled.



Fig. 5. flags-implementation in repast. The framework features a map view (com-
munication ranges as gray shades, trajectories as dotted lines), two error plots (eoo,
eoc), a parameter and a log window.

This was crucial for the performance analysis, which evaluates how many of the
implanted patterns are actually found by the flags algorithm.

For all experiments a population A of sensor nodes (|A| = 200) was generated
moving over |T | = 100 discrete time steps in an underlying square space of size
8192 ∗ 8192 positions. 50 out of 200 sensor nodes were given flocking behavior,
implanted in five flocks consisting of n = 10 flocking sensor nodes each with
a pattern radius p = 250. The flocking behavior follows the definition of flock

outlined in Sect. 3.2.

Unconstrained Random Movement (URM). In order to maximize the
comparability of our decentralized approach with previous work, the first set of
experiments used the same unconstrained random movement (URM) generator
as [13]. In the URM data sets, the location of a sensor node is completely random,
and unrelated to any previous steps. Non-flocking sensor nodes randomly “jump”
around in simulation space. Flocking sensor nodes, however, are at each time
step randomly positioned withing a circle of size pattern radius p = 250, itself
randomly positioned.

Correlated Random Walk (CRW). Initial experiments showed that URM
only allowed for very limited exploitation of the spatiotemporal characteristics
of movement. Anticipating that any decentralized pattern detection approach



would rely in part on exactly such exploitation, a second set of experiments was
conducted with trajectories generated using correlated random walks.

In a random walk, the location of a sensor node in successive timesteps is
determined by a randomized displacement from the previous time step. In cor-
related random walk (CRW) steps of sensor nodes are correlated by making the
direction and/or step length of the current move bias the direction and step
length of the next move [31]. Step length and turning angle of the subsequent
move are typically drawn from some stochastic frequency distribution, for in-
stance in the case of direction with turning angles concentrated around µ = 0.
CRW provides a more realistic model of random spatial movement than URM,
as consecutive locations of sensor nodes are highly correlated in space.

In the experiments a normal distribution with a direction change N(µ =
0, σ = 0.6 ∗ π) and a step length of N(µ = 50, σ = 15) was used. Each sensor
node walked a trajectory of approximate length 100∗50 = 5000 units. In addition
to the CRW property, flocking sensor nodes satisfied the flock property, by simply
ensuring that they were aggregated within the given pattern radius p = 250. The
map view in Fig. 5 illustrates first 50 time steps of a CRW data set.

5.2 Experiments

Following the general WSN constraint that communication consumes more en-
ergy than sensing, algorithm efficiency often bases on keeping the number of
messages low. For the evaluation of the here discussed decentralized data min-
ing application, a slightly different perspective was taken. It was assumed that
our sensor nodes constantly know in a qualitative manner by which neighbors
they are surrounded. Since it had to be anticipated that the decentralized data
mining algorithm is rather an approximation than an exact solution, perfor-
mance was evaluated as the ratio of patterns found with the centralized and the
decentralized approach. For the sake of simplicity, this evaluation focused on the
pattern detection and did not investigate the details of routing the information
back to the query source once the patterns had been detected.

flags reliability was tested for both URM data and CRW data (Fig. 6).
In both cases two levels of flock contiguity were tested: In order to be detected
flocks were required to be detected for k = 3, and k = 10 consecutive time steps
out of |T | = 100 time steps in total. Note that each flock could only be counted
once, even if several sensor nodes would find the same flock. For a total of 5
simulation runs and four combinations each, the detection error for a variable
c
p
− ratio was computed.

– detection error (y-axis): At each time step the number of found patterns was
compared with the known number of implanted patterns. Errors of omission
(eoo) and errors of commission (eoc) were evaluated and averaged over all
|T | = 100 time steps3.

3 Please note that in fact the error was averaged over |T | − k + 1 time steps, as in the
first k − 1 time steps no flocks can be detected due to their temporal extent.



• eoo (“missed patterns”): As 5 flocks consisting of 10 sensor nodes each
were implanted, over |T | = 100 time steps a total 500 flocks could be
detected correctly. An experiment run missing 100 flocks would result in
eoo = 0.2.

• eoc (“false positives”): flags uses heuristics in order to infer the presence
of patterns (local extrapolation and compensation factor E, see Sect.
4.2). Hence, flags may detect patterns where there are no patterns to
be found. Such false positives could, for example, emerge when c ≪ p and
ν = 2, as it might happen that two independent sensor nodes randomly
intermingle for a long enough time. All such false positives were counted
and again averaged over the whole experiment run. Again, with a total of
500 flocks per run, a total of 50 false positives would result in eoc = 0.1.

– c
p
−ratio (x-axis): flags performance was evaluated for a variable c

p
−ratio.

Given a pattern radius p = 250 the communication range c was varied in the
interval of [0, . . . , 500], hence in a c

p
− ratio interval of [0, . . . , 2].

Obviously, the above evaluation experiments do not account for flocks that
may randomly emerge in the generated data set, but were not purposely im-
planted in the first place. However, the emergence of such random flocks is
minimized by a relatively large flock size n = 10, and gets very unlikely with
increasing flock contiguity k. Furthermore, such random flocks would only in-
fluence eoc, as in fact existing random flocks could be misinterpreted as false
positives. Hence, our evaluation, in the worst case, overestimates eoc.

5.3 Results

All four graphs show a few similar properties (Fig. 6). No results are provided
when c

p
< 0.48, as below that threshold ν drops below 2 and hence pattern

detection is not possible anymore (see Fig. 4). Furthermore, the error graphs
often show “zigzagging” shape. This feature emerges since the number of counted
neighbors inherently changes in discrete steps and hence flags performance
alters in grades.

URM, k = 3. As long as the communication range c is slightly larger than
the pattern radius p, no patterns are missed out and eoc is 0. Around c

p
≈ 1.0 a

first eoo-peak emerges when large numbers ν are required for token generation.
Below 1.0, the performance decreases gradually, as flock sensor nodes randomly
shuffled in the flock disk result in more and more misses. No eoc was recorded.
Given that the sensor nodes relocate randomly at each step, it is very unlikely
that a significant number of sensor nodes satisfy the flock definition randomly.

URM, k = 10. As with k = 3, eoo emerges at c
p

< 1.2. However, with k = 10
it is almost impossible that any sensor node re-finds the very same neighbors
out of the n = 10 neighbors, hence flags’ performance degrades rapidly to total
failure shortly below 0.8. Again, and for the very same reasons as above, no eoc

was recorded.



CRW, k = 3. In the CRW experiment flags performs significantly better than
with URM, for k = 3 the performance is almost flawless. A t-test for 5 simulation
runs indicates that for any ratio c

p
< 0.84, eoo for CRW is significantly lower

than for URM on the 95% significance levels. The explanation for this good
performance lies in the locality property of CRW. Even when c drops below
p, subgroups within a flock tend to stay together and hence knowledge about
subgroups persists, allowing the consistent extrapolation of pattern knowledge
using the compensation factor E( c

p
). Also eoc shows moderate levels and only

expresses noticeable values when ν reaches 2 at c
p

= 0.56. The random event of
two nodes staying together for k = 3 time steps is moderately likely with the
chosen parameters and this eoc peak is hence unsurprising.

CRW, k = 10. Again, eoo is moderate, but admittedly on a higher level (ac-
cording to a t-test significantly higher at the 95% level for 0.78 < c

p
< 1.12). The

constraint of k = 10 makes it harder to maintain knowledge about subgroups.
On a positive note, the eoc does not peak at all as it is just too unlikely that
random patterns emerge with even ν = 2.

6 Discussion

Three major findings emerge from our experiments. First, with the used param-
eters, eoc is not an issue. Apart from the single peak with small c for k = 3,
eoc is negligible. This can be explained that with the used parameters even for
small νs and short ks it is very unlikely that enough sensor nodes stay together
for enough time steps. Different flock parameters and different densities amongst
non-flocking sensor nodes may admittedly result in higher eoc values. Second,
longer contiguities k are understandably harder to detect as a longer time re-
quired for tokens to mature opens up more possibilities for failure. Third, flags

performs much better for CRW than for URM, as we would expect from an
algorithm developed for detecting structure in structured movement data. Since
flags collects neighborhood knowledge over several consecutive time steps, lo-
cality where individuals tend to stay together for some time, obviously helps
for the crucial token maturing. Even though we assumed in our experiments
random movement, we could show that flags performs better as movement
becomes less random. We hence argue that the flags algorithm is taking ad-
vantage of the opportunity of movement rather than purely dealing with the
challenges of movement.

This last finding agrees with similar experiences in the LER experiments in
[29]. In their experiments the performance of their history based routing algo-
rithm depended heavily on the nature of the mobility regime and the parame-
terization of the experimental setup. LER succeeds only since the sensor nodes
perform random walks and thus sensor node mobility diffuses estimates of the
destination’s location sufficiently quickly and densely throughout the dynamic
mWSN. Even though the preferred regime was random walk in their case and
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correlated random walk in ours, it seems apparent that the inevitably very spe-
cialized algorithms for decentralized spatial computing operate best within the
constraints that they have been designed for.

Our initial experiments with decentralized data mining suggest that we sim-
ply have to accept the fact that any decentralized solutions inferring global
knowledge from partial and potentially imperfect local information must allow
for approximation solutions. One way of giving the limited sensor nodes the
leeway to do so is the use of heuristics, as applied with the local extrapolation
approach and the compensation factors E in flags. We allow our sensor nodes
to detect and report patterns even if they actually only found fractions of pat-
terns. For many decentralized data mining applications we will have to allow
for some error in order to achieve a workable solution at all. For the param-
eterizations used in our experiments, the heuristics provided very useful tools
without introducing too much of eoc. In other cases one might have to accept
some eoc in order to keep eoo low. Obviously, decentralized approximation solu-
tions could always be used as a cost-effective preliminary data mining step that
might trigger more reliable but also more expensive approaches.

flags exploits the spatiotemporal properties of movement as it features in-
formation exchange amongst roaming neighbors. This constant process of ex-
changing and validating information allows individual sensor nodes to learn
from their neighbors about processes beyond their own limited perception range.
However, recording of the past and hence “memory” is purely outsourced to the
knowledge tokens, the sensor nodes themselves are oblivious. Clearly, alterna-
tive approaches can be thought off where individual sensor nodes, other than
exchange their knowledge with their neighbors, also record what they see along
their trajectory, and integrate such spatiotemporal knowledge in order to gain
the big picture beyond their limited perception range.

As mentioned earlier, we use the same definition of flock and the same data
generator (for URM trajectories) as in [13]. However, a direct comparison be-
tween the two studies is not meaningful, because in [13], the results focus on the-
oretical and experimental running times, while the evaluation of our approach
bases on an error analysis, investigating on the reliability of a decentralized
solution.

7 Conclusions

In this paper we revisited the generic movement pattern “flock” and showed
that such patterns formed by individuals are very suitable for decentralized and
hence “ego-centric” pattern detection algorithms. We introduced flags (flocking
amongst geo-sensors) a solely decentralized flock detection algorithm. flags

exploits the spatiotemporal properties of movement as roaming sensor nodes
exchange information tokens that collect knowledge about patterns. Experiments
with simulated movement data show that flags successfully completes its task
without central control when a priori knowledge about the movement regime
can be exploited.



As a first general lesson learned, we argue that separating knowledge from
sensor nodes (in our specific case in the form of “floating knowledge tokens”), is
a promising strategy for overcoming the limited spatial perception of individual
sensor nodes in an mWSN. Second, we acknowledge that in a decentralized set-
ting heuristics are a suitable way for compensating for the limited perception of
individual sensor nodes. We thirdly identify the need to further explore locality.
Hence, currently we are working on improved versions of flags that use a mem-
ory function. Sensor nodes with memory are enabled to “graze” information in
space-time and hopefully assemble spatially limited glimpses in order to form
the bigger picture.
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