
Reporting Leaders and Followers

Among Trajectories of Moving Point Objects

Mattias Andersson1, Joachim Gudmundsson2, Patrick Laube3,⋆, and Thomas Wolle2

1 Department of Computer Science, Lund University, Lund, Sweden
mattias@cs.lth.se

2 NICTA⋆⋆ Sydney, Locked Bag 9013, Alexandria NSW 1435, Australia
{joachim.gudmundsson, thomas.wolle}@nicta.com.au

3 Department of Geomatics, The University of Melbourne, Victoria 3010, Australia
plaube@unimelb.edu.au

Abstract. Widespread availability of location aware devices (such as GPS receivers) pro-
motes capture of detailed movement trajectories of people, animals, vehicles and other mov-
ing objects, opening new options for a better understanding of the processes involved. In
this paper we investigate spatio-temporal movement patterns in large tracking data sets.
We present a natural definition of the pattern ‘one object is leading others’, which is based
on behavioural patterns discussed in the behavioural ecology literature. Such leadership
patterns can be characterised by a minimum time length for which they have to exist and
by a minimum number of entities involved in the pattern. Furthermore, we distinguish two
models (discrete and continuous) of the time axis for which patterns can start and end. For
all variants of these leadership patterns, we describe algorithms for their detection, given
the trajectories of a group of moving entities. A theoretical analysis as well as experiments
show that these algorithms efficiently report leadership patterns.

Keywords: moving point objects, trajectories, movement patterns, leadership, spatio-temporal
data structures, computational geometry

1 Introduction

Movement is the spatio-temporal process par excellence. Technological advances of location-aware
devices, surveillance systems and electronic transaction networks produce more and more oppor-
tunities to trace moving individuals. Consequently, an eclectic set of disciplines including geogra-
phy [17], data base research [23], animal behaviour research [26], surveillance and security analy-
sis [46, 48, 58], transport analysis [30, 34], and market research [49] shows an increasing interest in
movement patterns of various entities moving in various spaces over various times scales.

At the same time traditional geographic analysis suffers from the legacy of cartography’s static
perception of the world and is thus generally not suited for the analysis of individual movement tra-
jectories [8, 51], sometimes referred to as geospatial lifelines especially in a GIScience context [43].
Many authors have therefore recently proposed to use geographical (and thus) spatio-temporal
data mining as a promising alternative to overcome this methodological shortcoming [14, 44].

As can be seen from the pattern terminology, the present paper is largely inspired by movement
patterns observed in gregarious animals, such as flocking sheep or schooling fish. It follows a strat-
egy to link the proposed patterns as close as possible to observable patterns. The proposed pattern
definitions are based on behavioural patterns discussed in the behavioural ecology literature and
used for the modelling of realistic movement patterns of agent-based virtual life forms [27, 35].

This paper addresses the movement pattern of one object leading others. The paper therefore
defines the movement pattern ‘leadership’ and subsequently presents algorithms to detect such

⋆ Partially supported by ARC Discovery grant DPDP0662906.
⋆⋆ National ICT Australia is funded through the Australian Government’s Backing Australia’s Ability

initiative, in part through the Australian Research Council.

2 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

patterns. Leadership, as defined in this paper, bases on the geometrical relation of one individual
moving in front of its followers. The algorithms presented for an efficient detection of ‘leadership’
make use of a set of auxiliary data structures, specifically developed for capturing those spatio-
temporal relations amongst moving objects that constitute leadership.

Even though the leadership pattern in this paper is motivated and investigated with respect to
animal behaviour research, its definition is held generic and is thus applicable to arbitrary types
of entities moving in a 2D-space. In general the input is a set of n moving point objects e1, ..., en

whose locations are known at τ consecutive time-steps t1, ..., tτ , that is, the trajectory of each
object is a polygonal line that can self-intersect. For brevity, we will call moving point objects
entities from now on. We assume that the movement of an entity from its position at a time-step
tj to its position at the next time-step tj+1 is described by the straight-line segment between the
two coordinates, and that the entity moves along the segment with constant velocity.

The paper is organised as follows. Section 2 links previous research on movement patterns
similar to our leadership with the latest related research. Section 3 defines our notion of leadership
and features definitions and preliminaries. In Section 4 and 5, we present algorithms for the
detection of leadership. Then, in Section 6 we present experimental results and discuss their
implications in Section 7. We conclude the paper with final remarks and an outlook on future
work in Section 8.

2 Related work

2.1 Inspiring Animals

Animals interact socially to gain from coordination of their behaviour [9, 33]. Rands et al. [50]
illustrated the spontaneous emergence of leaders and followers using a simulation model repro-
ducing the decision process of a pair of foraging animals, balancing their energetic states. The
idea and the term of leadership have been used in several different contexts in the field of animal
behaviour research, see Dumont et al. [12] for an overview. In general, one can distinguish two
different readings:

1. (i) ‘the event or process of one entity initiating a group movement (e.g. [7, 12, 40, 47])’ Leading
in this sense is an active behaviour, referring to individuals that consistently initiate displace-
ment of the group they belong to. For example, Dumont et al. [12] found that in a group of
15 grazing heifers the same individual was reported to lead the group to new feeding places
in 48% of all group movements. Similar leadership behaviour has also been studied in gray
wolves (Canis lupus) [47].

2. (ii) ‘the event or process of one entity in front, leading a group movement (e.g. [7, 22])’ Leading
in this sense involves the notion of a leader moving in front of followers. Gueron and Levin
model the spatial constellation ‘in front of’ as a function of the relative position with respect to
the averaged position of its neighbours within a given range. Even though it has been found for
grazing animals that leaders may guide a group being in front or chasing from behind, animals
in front are considered to be more relevant to determine where the group will graze [12].

The use of the geometrical arrangement of moving entities has furthermore a long tradition for
realistically modelling group behaviour, be it in animal behaviour science [22] or in the animation
industry [52]. Most prominent is the flocking model implemented in NetLogo [59, 62], which mimics
the flocking of birds [61]. The moving agents dynamically coordinate their movement based on
rules on alignment (turning in order to adopt direction of nearby agents), separation (turning to
avoid getting to close to nearby agents) and cohesion (move towards other nearby agents). This
model explicitly excludes the idea of an individual leading the others, but involves identical agents,
each following the same set of rules. The basic model includes a maximal distance of vision r and
360 degree field of view. However, it is also possible in NetLogo to specify a cone of vision, a most
interesting concept with respect to the investigation of further structure in flocking entities that
can, for example, be seen in V-shaped flocks as with migrating geese. Such front priority is also

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 3

often used for agent-based models of schooling fish, where only individuals in front are candidates
as interacting neighbours [27]. Inada’s and Kawachi’s model uses a wide-angled cone of perception,
directed in movement direction and thus omitting a blind region behind the fish (Figure 1, Figure 2
in [27]). Jadbabaie et al. give a theoretical explanation for the spontaneous coordination of agents
despite the absence of a centralised coordination and just following a simple nearest neighbour
rule [29]. However, in an extension they also investigate the influence of a leader in their system.
◮ All such research integrating biology with information science and computer science points out
the potential of a systematic investigation of geometric relations of moving animals for analysing,
modelling and simulating movement processes. Above all, animal movement provides a set of very
convincing metaphors for more generic movement patterns, as shall be exploited with the pattern
‘leadership’ in this paper.

2.2 Limiting Databases

There is ample research on moving object databases (MOD) [25, 56, 63, 64]. Whereas most database
research on MOD focuses on data structures, indexing and efficient querying techniques for moving
objects [1, 16, 23, 24], only recently the potential of data mining for movement patterns has been
acknowledged [31, 32, 53]. For example, Du Mouza and Rigaux propose mobility patterns that
describe sequences of moves in a discrete 2D-space [11].

In a GIScience context, activity related movement patterns have been researched, often with re-
spect to improving location-based services (LBS). Dykes and Mountain search episodes expressing
distinctive characteristics of movement, including absolute speed, direction, sinuosity and mea-
surements of their variations [13]. Smyth presents a data mining algorithm that assigns predefined
activities to segments of trajectories by analysing some measurable motion descriptors, such as
speed, heading and acceleration [57].

A common approach in database research is to take an existing spatial query type and then
study its generalisations to spatio-temporal data. An example of this is the recent work on continu-
ous k-nearest neighbour querying over mobile data [45, 65]. The focus within data mining research
is to design techniques to discover new patterns in large repositories of spatio-temporal data. For
example, Mamoulis et al. [42] mine periodic patterns moving between objects and Ishikawa et
al. [28] mine spatio-temporal patterns in the form of Markov transition probabilities. More re-
cently Verhein and Chawla [60] used association rule mining for patterns such as, sinks, sources,
stationary regions and thoroughfares.

Spatio-temporal proximity of entities is a reasonable first premise for many situations that
assume interactions between individuals. One obvious analytical toolset to uncover proximity
patterns in individual trajectories is clustering. Even though the spatio-temporal nature of move-
ment data adds additional complexity to clustering procedures, there have been some successful
approaches for clustering trajectories [10, 41, 55]. However, spatio-temporal co-presence does not
explicitly include the idea of interactions within individuals. Relations such as ‘leading’, ‘following’
or ‘setting a trend’ cannot be investigated by pure clustering alone.
◮ In essence, conventional spatial and spatio-temporal querying and clustering are inherently
static and thus limited in their ability to cope with dynamic movement. Hence complementing
techniques have to be explored in order to cope with the emerging new generation of movement
data. Shirabe [54] illustrates such an alternative and uses correlation analysis in order to discover
leader and follower relationships amongst moving individuals.

2.3 Promising Patterns

Precursory to this research Laube and colleagues proposed the REMO framework (RElative MO-
tion) which defines similar behaviour in groups of entities [36–38]. They defined a collection of
movement patterns based on similar movement properties such as speed, acceleration or movement
direction. Laube et al. [39] extended the framework by not only including movement properties,
but also location itself. They defined several movement patterns, including flock (co-ordinately
moving close together), trend-setter (anticipating a move of others), leadership (spatially leading

4 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

a move of others), convergence (converging towards a spot) and encounter (meeting at a spot) and
gave algorithms to compute them efficiently. Later Gudmundsson et al. [21] considered the same
problems and extended the algorithmic results by primarily focusing on approximation algorithms
– ‘Any exact values of m and r hardly have a special significance – 20 caribou meeting in a circle
with radius 50 meters form as interesting a pattern as 19 caribou meeting in a circle with radius
51 meters.’ Benkert et al. [5] and Gudmundsson and van Kreveld [20] only recently revisited the
flock pattern and gave a more generic definition that bases purely on the geometric arrangement of
the moving entities and thus excludes the need of an analytical space as with the initial definition
of the patterns [36, 39].

The model used in the REMO framework considers each time-step separately, that is, given
m ∈ N and r > 0 a flock is defined by at least m entities within a circular region of radius r
and moving in the same direction at some point in time. Benkert et al. [5] argued that this is not
enough for many practical applications, e.g. a group of animals may need to stay together for days
or even weeks before it is defined as a flock. They proposed the following definition of a flock:

Definition 1. (m, k, r)-flock - Let m, k ∈ N and r > 0 be given constants. Given a set of n
trajectories, where each trajectory consists of τ line segments, a flock in a time interval I = [ti, tj],
where j − i+1 ≥ k, consists of at least m entities, such that for every point in time within I there
is a disk of radius r that contains all the m entities.

We will use a similar model when defining the leadership patterns, see Section 3. Using this
model, Gudmundsson and van Kreveld [20] recently showed that computing the longest duration
flock and the largest subset flock is NP-hard to approximate within a factor of τ1−ε and n1−ε,
respectively, for any constant ε > 0. In the same model, Benkert et al. [5] described an efficient
approximation algorithm for reporting and detecting flocks, where they let the size of the region
deviate slightly from what is specified. Approximating the size of the circular region with a factor
of ∆ > 1 means that a disk with radius between r and ∆r that contains at least m objects may
or may not be reported as a flock while a region with a radius of at most r that contains at
least m entities will always be reported. Their main approach is a (2 + ε)-approximation (for any
constant ε > 0) with running time T (n) = O(kn(2k log n + k2/ε2k−1)). Note that even though the
dependency on the number of entities (namely n) is small, the dependency on the duration of the
flock pattern (namely k) is exponential. Al-Naymat et al. [2] handle the problem of considering
many entities and long-duration patterns by using a preprocessing step where the number of
dimensions (i.e. time-steps) is reduced by random projection.
◮ A series of articles exploring simple flocking illustrated the potential of patterns based on the
geometric arrangement of moving entities. The present paper shall achieve a similar definition for
the more complex pattern leadership as well as efficient algorithms for its detection.

3 Leadership

We consider n entities moving in the two dimensional plane during the time interval [t1, tτ], see
Figure 1(a) for an example. The infinite set Tp of time-points is defined as Tp = {t | t ∈ [t1, tτ]},
and the set Ts of time-steps is the set of discrete time-points given as input, i.e. Ts = {t1, ..., tτ}.
We specify open and closed time intervals by (tx, ty) and [tx, ty], respectively. A unit-time-interval
is an open interval I between two consecutive time-steps, i.e. I = (tx−1, tx), for a time-step tx
with x > 1.

3.1 Defining Leadership Patterns

For describing our leadership patterns, we need a couple of parameters specifying these patterns.
More specifically, we assume that we are given numbers m (specifying the size of a pattern, i.e. the
minimum number of entities involved in a pattern), k (the minimum temporal length of a pattern),
a radius r (influencing the spatial size of a pattern), an angle α (also influencing the spatial size of
a pattern) and an angle β (determining spatial characteristics of a pattern). We consider them as

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 5

2

3

4

4

4
5

6

7

8

1

2

3

5

6

7

8

1

2

3
5

6
7

8

1

2 3

5

6

7

8

1

4

4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8

e1IntervalsNotFwg(t):

IntervalsFwg(e’,t):

IntervalsFwdm(t):

(m=1)

numFws(t):

0 1 2 0 1 2 3 0 e2 0 0 0 0 0 1 0 0 e3

e3

e3

0 0 0 0 0 0 0 0 e4

e4

0 1 2 3 4 5 6 7

e2 0 1 2 3 4 0 0 0 e1 0 0 0 0 0 0 0 0 e1 0 0 0 0 0 0 0 0 e1 0 0 0 1 0 0 0 1

e3 0 1 2 3 0 0 0 0 e3 0 0 0 0 0 0 0 0 e2 0 0 0 1 0 0 0 0 e2 0 0 0 0 0 0 1 2

e1 0 1 2 3 4 0 0 0 e2 0 0 0 0 0 0 0 0 e3 0 0 0 1 0 0 0 0 e4 0 0 0 1 2 3 4 5

e1 0 2 2 2 1 0 0 0 e2 0 0 0 0 0 0 0 0 e3 0 0 0 1 0 0 0 0 e4 0 0 0 1 1 1 2 3

e4 0 0 0 0 0 0 0 0 e4 0 0 0 0 0 0 0 0 e4 0 0 0 0 0 0 0 0 e3 0 0 0 0 1 2 3 4

e1

s1

s2

e2

e1

e4

e2

se d

(a) (b)

(c)

Fig. 1. (a) A set of 4 entities moving from left to right over 7 unit-time-intervals, i.e. over 8 time-steps. (b)
Illustrating the definition of the front-region as the disc-segment within bold lines. (c) The follow-arrays
of the four entities, where we use the front-region as depicted in (b) and α = β.

constants during the rest of the paper, i.e. we will not carry them along as parameters of functions
or other notations.

At time-point tx, an entity ej is located at a position with coordinates xpos(ej , tx) and
ypos(ej , tx). As we do not have spatial information of an entity between two time-steps we make
the following assumption for the remainder of this paper.

Assumption 1 We assume that all entities move between two consecutive time-steps with con-
stant direction and constant velocity.

The same assumption has been used in earlier work [5]. It enables us to interpolate the positions of
entities between time-steps. Even though we have no bound on the accuracy of this interpolation
compared to the real positions of the entities, it appears to be a reasonable approach when tackling
our leadership problems, as long as the sampling of points on the trajectories is sufficiently dense.

Suppose we are given an entity ej at time-point t with tx−1 < t < tx for tx ∈ Ts. We say ej

is heading into direction d where d is an angle in [0, 2π) that is specified by the line segment ej

is moving along between time-steps tx−1 and tx. (If ej does not move between tx−1 and tx then
we define d to be the direction of the line segment ej is moving along between the time-steps
tx−2 and tx−1. If no such time-steps exist, then we define d := 0.) The difference between two
directions d1 and d2 is denoted by ||d1 − d2||, and it is an absolute value, i.e. it is an angle in
[0, π]. We declare the direction of an entity at a time-step tx to be undefined, because at time-steps
an entity might change its direction. However, the direction of an entity ei at a time-step tx with
respect to (tx−1, tx) is the direction ei is heading to at any time-point in (tx−1, tx). Therefore, when
considering time intervals with certain properties of entities depending on direction, we implicitly
exclude time-steps from those intervals in the remainder of this paper.

Given an entity e and a time-point t 6∈ Ts, we define the front-region of e at time t in the follow-
ing way. Consider the disk C with radius r centred at (xpos(e, t), ypos(e, t)). Furthermore, consider
three line segments s1, s2 and s of length r, all having one end point at (xpos(e, t), ypos(e, t)).
Segment s points in the direction d that e is heading to at time t, and segments s1 and s2 are
the well defined segments forming angles of α

2
and −α

2
with s, respectively. The part of the disk

6 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

C that contains s and is bounded by the segments s1 and s2 is the front-region, see Figures 1(b)
and 2. We denote this wedge-shaped region by front(e) at time t. An entity ej is said to be in
front of an entity ei at time t 6∈ Ts if and only if ej ∈ front(ei) at time t.

Definition 2. Let di and dj be the directions of the entities ei and ej at time t 6∈ Ts, respectively.
Entity ei is said to follow entity ej at time t, iff ej ∈ front(ei) at time t and ||di − dj || ≤ β.

An entity ej is said to follow entity ei at time [tx, ty] for time-points tx, ty, if and only if ei follows
ej at time t for all time-points t ∈ [tx, ty] \ Ts.

Definition 3. An entity ei is said to be a leader at time [tx, ty] for time-points tx, ty, if and only
if ei does not follow anyone at time [tx, ty], and ei is followed by sufficiently many entities at time
[tx, ty]. If there is an entity that is a leader of at least m entities for at least k time units, we have
a leadership pattern.

See Figure 2 for an example of some notations.

||di − dj ||ei

di

dj

α

α

ej

r

r

front(ei)

Fig. 2. The front regions of ei and ej as wedges of edge length r and apex angle α. Entity ej is in front
of ei. The entities are heading into directions di and dj , respectively. If ||di − dj || ≤ β then ei follows ej .

Example 1. Consider the entities in Figure 1(a) where we use a front-region as depicted in Fig-
ure 1(b). We see that e2 is following e1 at time (t1, t5), e1 is not following any other entity at time
(t1, t3) and (t4, t7) and hence e1 is a leader of e2 at time (t1, t3) and (t4, t5).

In the remainder of this section, we consider two entities ei and ej and two consecutive time-
steps tx−1 and tx. The next lemma tells us that if we want to check whether an entity is following
any other entity during the entire interval (tx−1, tx), we only have to check this at the two end
points with respect to (tx−1, tx). The lemma is rather intuitive and can be proven with very much
the same ideas as in the proof of Lemma 2 in [5].

Lemma 1. Let ei and ej be two entities, and let tx−1 and tx be two consecutive time-steps. If ei

follows ej at time-points ty and tz with tx−1 < ty ≤ tz < tx then under Assumption 1, ei follows
ej at any time-point t ∈ [ty, tz].

Note that the lemma is also true for tx−1 = ty and tz = tx, however, the directions of the entities
at these time-points are with respect to (tx−1, tx). Therefore, the time that an entity ei follows
another entity ej between two consecutive time-steps tx−1 and tx is a single subinterval of [tx−1, tx],
and such an interval can be computed in a straightforward manner.

Lemma 2. Given two entities ei and ej and two time-steps tx−1 and tx, we can compute in
constant time the subinterval of [tx−1, tx] for which ei ∈ front(ej) and for which ej follows ei,
under Assumption 1.

3.2 Problem Statement

A leadership pattern exists if there is an entity that is a leader of sufficiently many entities over a
long enough series of time-steps or time-points. Such a pattern is characterised by two values m
which is the size of the set of followers, and k which is the length of a pattern. As mentioned in

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 7

related work [5, 21] specifying exactly which of the patterns should be reported is often a subject
for discussion. For instance, a leadership pattern of length exactly k + 1 (starting at time-step
tx) implies the existence of two leadership patterns of length exactly k (albeit ‘overlapping’, one
starting at time-step tx and the other starting at time-step tx+1). However, the pattern of length
k + 1 might be more interesting to report from a practical point of view. Therefore, we consider
the following problems where we assume that m and k are constants.

– LP-report-all: For each entity e, report all time intervals where e is a leader of at least m
entities for at least k time units.

– LP-max-length: Compute the length of a longest leadership pattern of size at least m, i.e.
compute the largest value kmax such that there is an entity e that is a leader of at least m
entities for kmax time units.

– LP-max-size: Compute the size of a largest leadership pattern of length at least k, i.e. compute
the largest value mmax such that there is an entity e that is a leader of mmax entities for at
least k time units.

All these problems come in four different flavours which are combinations of the modelling
of the time axis (discrete vs. continuous) and the consistency of the set of followers (varying
vs. non-varying).

More specifically, we consider each of the problems in a discrete case, where patterns (and
follow behaviour) can only start and end at the discrete time-steps. In this discrete model, we can
ensure that patterns exist, since we have the coordinates of the entities for all time-steps. Unlike
this, patterns can start and end at any time-points in the continuous case. As discussed above, the
data for the continuous case relies on Assumption 1. Recall that we do not have any guarantee on
the accuracy of the linear interpolation between time-steps. This possible inaccuracy carries over
to a possible inaccuracy of the reported leadership patterns in the continuous model. However, the
continuous model is likely to become more important in the future, when huge data sets over many
time-steps are available, which might need to be simplified in order to reduce storage space and
processing time. Simplified trajectories are likely to be non-synchronous, yet they can approximate
the original trajectory within a fixed specified error bound (see e.g. [6, 19]).

The other variation concerns the set of followers. If there is a subset S of entities such that
for each time-point of the duration of the pattern all entities in S follow the leader (there may
be additional followers as well at some time-points), then we call this a non-varying (subset)
leadership pattern. In contrast to this, if we allow the subset of followers to change from one
unit-time-interval to the next during the duration of the pattern (some entities may drop out,
others may join in), then we call such a pattern a varying (subset) leadership pattern, as long as
always at least m entities are following at each unit-time interval of the pattern. Depending on
the application a non-varying or a varying set of followers might be desirable.

4 Algorithms for the Discrete Case

In the discrete case, patterns can only start and end at time-steps. We first describe arrays storing
information about the follow behaviour of the entities with respect to a fixed entity ei. Later, these
arrays will be used to solve our leadership problems.

4.1 Getting Ready – Computing Follow-Arrays for an Entity ei

For an entity ei to determine whether it is a leader at the time (tx, ty), we need to know whether
ei is not following any other entity and whether ei is followed by sufficiently many entities at
(tx, ty). We consider ei at this time as a potential leader, and we compute a couple of follow-
arrays called ‘IntervalsNotFwg(tx)’, ‘IntervalsFwg(tx, ej)’, ‘IntervalsFwdm (tx)’ and ‘NumFws(tx)’.
The first three arrays store the number of consecutive unit-time-intervals that there is a certain
follow-behaviour. In contrast to this, the fourth array stores the number of entities with a certain
follow-behaviour.

8 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

IntervalsNotFwg: (short for ‘the number of unit-time-intervals ei is not following at tx’)
The array IntervalsNotFwg(tx) is a one dimensional array storing nonnegative integers. Such an
integer for time-step tx specifies for how many past consecutive unit-time-intervals (the last one
ending at tx) ei is not following any other entity. That is, if IntervalsNotFwg(tx) = y, then ei is
not following any other entity during the time interval (tx−y, tx). To compute the values of the
IntervalsNotFwg-array, we use two nested loops. The outer loop runs from tx = t2, ..., tτ (we start
at tx = 2 and set IntervalsNotFwg(t1) := 0). The inner loop ranges over ej = e1, ..., en and ej 6= ei.
After each round of the inner loop we update IntervalsNotFwg(tx) according to whether we found
an entity ej such that ei follows ej at time (tx−1, tx). According to Lemma 2 each such single test
can be done in constant time.

IntervalsFwg: (short for ‘the number of unit-time-intervals ei is followed by ej at tx’) The
array IntervalsFwg(tx, ej) is a (τ × n − 1) matrix storing nonnegative integers specifying for how
many past consecutive unit-time-intervals (the last one ending at tx) ej is following ei (with
ej 6= ei). Filling the IntervalsFwg-array with the right values can also be done with two nested
loops, one outer loop for tx = t2, ..., tτ and one inner loop for ej = e1, ..., en and ej 6= ei. Initially
set IntervalsFwg(t1, ej) := 0. We test whether ej follows ei at the unit-time-interval (tx−1, tx), and
if so, we update IntervalsFwg(tx, ej).

IntervalsFwdm: (short for ‘the number of unit-time-intervals ei has at least m followers at tx’)
The array IntervalsFwdm (tx) is a one-dimensional array storing integers specifying for how many
consecutive past unit-time-intervals (the last one ending at tx) there are at least m entities following
entity ei. These m entities can be varying over time. Given the array IntervalsFwg , computing the
IntervalsFwdm -array can be done by looping over the IntervalsFwg array. We start at tx = 2 and
set IntervalsFwdm (t1) := 0. Now, we count in each column of IntervalsFwg (if we imagine the array
IntervalsFwg to be arranged to have τ columns and n − 1 rows) the number of entities following
ei at the current time-step. If this number is smaller than m, we set IntervalsFwdm (tx) := 0, and
if this number is at least m, we set IntervalsFwdm (tx) := IntervalsFwdm(tx−1) + 1.

NumFws: (short for ‘the number of followers of ei at tx’) Another array is NumFws(tx) which
is a one-dimensional array storing integers specifying how many entities are following entity ei at
time (tx−1, tx). Again, counting in each row of IntervalsFwg the number of entities following ei at
the current time-step yields the corresponding value of the NumFws array.

From the above discussion on the corresponding arrays, we conclude with the following lemma.

Lemma 3. The IntervalsNotFwg, IntervalsFwg, IntervalsFwdm and NumFws-arrays for an en-
tity ei can be computed in O(nτ) time and space.

Example 2. Consider the entities in Figure 1(a) where we use a front-region as depicted in Fig-
ure 1(b). Figure 1(c) shows four columns (one for each entity) of follow-arrays. To fill the arrays
IntervalsNotFwg and IntervalsFwg , we need the trajectories and the front-regions. Once that is
done, the arrays IntervalsFwdm and NumFws can be computed according to their definition.

4.2 Solving LP Problems with a Non-varying Subset of Followers

LP-report-all

In the discrete leadership version we assume that patterns can only start and end at time-steps
Ts = {t1, ..., tτ}. We use the arrays IntervalsNotFwg and IntervalsFwg , and we combine their
information to determine whether ei is a leader of a non-varying-subset of followers. To this end,
we look for time-steps tx such that IntervalsNotFwg(tx) ≥ k. For each such time-step tx, we
inspect the array IntervalsFwg(tx, ej) for j = 1, ..., n and j 6= i, and we count the number of times
that IntervalsFwg(tx, ej) ≥ k. Let m(k) denote this number. Now we can report ei as a leader for
every time-step tx for which m(k) ≥ m. As we only need to traverse our arrays at most once, this
can be done in O(nτ) time.

Example 3. Let k = 1 and m = 2. Looking at the follow-arrays of entity e1 in Figure 3, we see
(shaded region) that e1 is not following anyone, but is followed by 2 entities, and this happens

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 9

for at least k = 1 unit-time-intervals at the time-steps 2 and 3. Hence, we would report two
leadership-patterns with e1 as leader.

So far, we have seen that we can compute in O(nτ) time and space at which time-steps an
entity ei is a leader. To find all leadership patterns amongst a set of entities we test any entity
individually. As we only have to store one instance of each array at a time we can conclude with
the following lemma.

Lemma 4. Reporting all non-varying-subset leadership patterns of size at least m and length at
least k, amongst n trajectories over τ time-steps can be done in O(n2τ) time and O(nτ) space.

4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8

e1IntervalsNotFwg(t):

IntervalsFwg(e’,t):

0 1 2 0 1 2 3 0 e2 0 0 0 0 0 1 0 0 e3 0 0 0 0 0 0 0 0 e4 0 1 2 3 4 5 6 7

e2 0 1 2 3 4 0 0 0 e1 0 0 0 0 0 0 0 0 e1 0 0 0 0 0 0 0 0 e1 0 0 0 1 0 0 0 1

e3 0 1 2 3 0 0 0 0 e3 0 0 0 0 0 0 0 0 e2 0 0 0 1 0 0 0 0 e2 0 0 0 0 0 0 1 2

e4 0 0 0 0 0 0 0 0 e4 0 0 0 0 0 0 0 0 e4 0 0 0 0 0 0 0 0 e3 0 0 0 0 1 2 3 4

Fig. 3. Follow-arrays with highlighted entries to mark patterns with a non-varying subset of followers.

LP-max-length

To compute the length of a longest pattern, where ei is the leader, we utilise a variable kmax.
Initially we set kmax := 0; we then loop once over all time-steps and at each time-step we may
modify kmax, and at the end kmax will be equal to the length of a longest leadership pattern (for
a specific m). Now, for each tx = t1, ..., tτ we check whether IntervalsNotFwg(tx) > kmax and if
so, we do the following. We inspect the column of the array IntervalsFwg corresponding to tx. We
traverse that column (i.e. we loop for j = 1, ..., n, j 6= i), and we count the number of entities
ej for which holds that IntervalsFwg(tx, ej) > kmax. Let this number be denoted by m(kmax). If
m(kmax) ≥ m, then we have at least m entities following ei for more than kmax unit-time-intervals,
and ei is not following anyone during that time. Hence, we increase kmax by one and proceed with
the next time-step tx+1. Note that we only increase kmax by one as tx is the first time-step for
which m(kmax) ≥ m. As we only traverse the entire arrays once, it takes O(nτ) time to compute
the longest pattern, where ei is the leader.

The following concluding lemma might surprise, as the longest duration flock pattern is NP-
hard to compute and cannot even be approximated within a factor of τ1−ε [20].

Lemma 5. The longest duration leadership pattern for a non-varying-subset of followers of size
at least m can be computed in O(n2τ) time and O(nτ) space.

Example 4. Consider again Figure 3. For m = 1, the above described method would find entity
e4 to be the leader (of one entity, namely e3) for four consecutive unit-time-intervals, which is the
length of a longest pattern (for m = 1).

LP-max-size

It is also possible to compute the size of a largest non-varying-subset of followers that follows a
leader for at least k unit-time-intervals. We utilise the arrays IntervalsNotFwg and IntervalsFwg
and a variable mmax, initially set to 0. We update this variable whenever we find a larger set of
followers. That is, for tx := t1, ..., tτ , we test if both IntervalsNotFwg(tx) ≥ k and m(k) > mmax,
and if so, we set mmax := m(k), where m(k) is defined in the same way as m(kmax) in the section
above. Hence, we obtain the following lemma.

10 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

Lemma 6. The size of a largest non-varying-subset of entities that follow a leader for at least k
time-steps can be computed in O(n2τ) time and O(nτ) space.

Example 5. Consider again Figure 3, and let k = 1. The algorithm above computes mmax = 3 as
entity e4 is a leader of 3 entities for k = 1 unit-time-interval at time-step 8.

4.3 Solving LP Problems with a Varying Subset of Followers

The variants of the problem of finding leadership patterns where the set of followers can change
during the leadership pattern can be solved in a similar way as proposed in Section 4.2. To
determine if an entity ei is a leader of a varying-subset of followers, we use the follow-arrays
IntervalsNotFwg(tx), IntervalsFwdm (tx) and NumFws(tx) as described in Section 4.1.

LP-report-all

In the same flavour as described above, we can find out if ei is a leader. We look for and report
time-steps tx, such that IntervalsNotFwg(tx) ≥ k and IntervalsFwdm(tx) ≥ k. It is easy to see
that reporting when ei is a leader can be done in O(nτ) time.

Example 6. Let m = 1 and k = 2. Consider e1’s follow-arrays in the upper half of Figure 4. Above
method reports one time-steps (namely time-step 3) where e1 is a leader of at least m = 1 entities
for at least k = 2 unit-time-intervals.

The complexity of finding all leadership patterns for n entities is summarised as follows.

Lemma 7. Reporting all varying-subset leadership patterns amongst n trajectories over τ time-
steps can be done in O(n2τ) time and O(nτ) space.

4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8

e1IntervalsNotFwg(t): 0 1 2 0 1 2 3 0 e2 0 0 0 0 0 1 0 0 e3 0 0 0 0 0 0 0 0 e4 0 1 2 3 4 5 6 7

e1IntervalsNotFwg(t): 0 1 2 0 1 2 3 0 e2 0 0 0 0 0 1 0 0 e3 0 0 0 0 0 0 0 0 e4 0 1 2 3 4 5 6 7

IntervalsFwdm(t):
(m=1)

e1 0 1 2 3 4 0 0 0 e2 0 0 0 0 0 0 0 0 e3 0 0 0 1 0 0 0 0 e4 0 0 0 1 2 3 4 5

numFws(t): e1 0 2 2 2 1 0 0 0 e2 0 0 0 0 0 0 0 0 e3 0 0 0 1 0 0 0 0 e4 0 0 0 1 1 1 2 3

Fig. 4. Follow-arrays with highlighted entries to mark patterns with a varying subset of followers.

LP-max-length

For computing the longest duration leadership pattern, we use the arrays IntervalsNotFwg and
IntervalsFwdm , and we search for the largest kmax (initially kmax := 0) such that there is a time-
step tx for which IntervalsNotFwg(tx) ≥ kmax and IntervalsFwdm(tx) ≥ kmax. This can be done as
follows. For tx = t1, ..., tτ , we check if min{IntervalsNotFwg(tx), IntervalsFwdm (tx)} > kmax, and
if so, we perform an update kmax := min{IntervalsNotFwg(tx), IntervalsFwdm (tx)} and proceed
with the next time-step tx+1.

Lemma 8. The longest duration leadership pattern for a varying-subset of followers of size at
least m can be computed in O(n2τ) time and O(nτ) space.

Example 7. Looking at the follow-arrays in the upper half of Figure 4, we see that e4 is a leader
of at least m = 1 entity for kmax = 5 unit-time-intervals (starting at time-step 3 and ending at
time-step 8).

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 11

LP-max-size

If we would like to compute the size of a largest varying set of followers that follow ei for at least
k time-steps, we cannot use the array IntervalsFwdm directly as this array contains information
only for one specific m. However, an easy way is to use binary search on m and recompute the
IntervalsFwdm array for each value of m. This adds an additional log n factor to the running time.

We propose a slightly different approach. By spending linear preprocessing time, we can com-
pute the minima of any substring of a sequence of numbers in O(1) time. For more information
on this Range Minimum Query (RMQ), see e.g. [4]. Now, we use the array NumFws and we look
for at least k consecutive unit-time-intervals such that the minimum number of followers in the
array NumFws during that time is as large as possible and ei can be a leader. That is, we are
looking for k consecutive unit-time-intervals such that ei does not follow any other entity and
for the largest minimum (to be referred to as mmax) over all numbers of followers corresponding
to those k consecutive unit-time-intervals. All minima can be computed in O(τ) time [4], hence,
mmax can be computed in linear time.

Lemma 9. The size of a largest varying-subset of entities that follow a leader for at least k time-
steps can be computed in O(n2τ) time and O(nτ) space.

Example 8. Consider the lower half of Figure 4 and let k = 2. The above algorithm computes
mmax = 2 at time-step 3 for entity e1 and at time-steps 8 for entity e4.

5 Algorithms for the Continuous Case

In contrast to the discrete version of the leadership pattern, where a pattern can only start or
end at the given discrete time-steps, in the continuous version of the problem a pattern can start
and end at any point in time. As we do not have spatial information of the entities between two
consecutive time-steps we use Assumption 1 to tackle the continuous version in this section. The
main ideas are similar to the discrete case, but instead of using arrays storing single numbers to
represent follow-behaviour we will use sets of time intervals. First, we describe how to compute
them for a fixed entity ei and then we define two operations on (sets of) intervals. Later, these
intervals and operations are used to solve our leadership problems.

5.1 Getting Ready – Follow-Intervals for an Entity ei

Computing Follow-Intervals: A first step is to compute a set SetNotFwg of notfollowing-
intervals representing when a fixed entity ei is not following any other entity ej . An interval
I = (txa

, tya
) ∈ SetNotFwg with txa

≤ tya
means that entity ei is not following any other entity

during the whole time interval I. Because entities move on a straight line between two consecutive
time-steps, cf. Assumption 1, ei can be involved in at most two events that change its follow-
behaviour (i.e. the events of beginning or ending to follow) for each entity between two consecutive
time-steps. That is why the set SetNotFwg contains O(nτ) intervals. We can compute this set with
two nested loops one over all time-steps, another over all entities. By Lemma 2, this can be done
in O(nτ) time in total.

We also need information about which entities follow ei. This information is again stored in
a set SetFwd of intervals. An interval I = (txa

, tya
) ∈ SetFwd with txa

< tya
means that ei is

followed by an entity, say ej, during the whole time interval I. Also this set contains at most O(nτ)
intervals, as an entity can change its follow behaviour with respect to ei at most twice between
two consecutive time-steps. We can compute this set with two nested loops one over all time-steps,
another over all entities. By Lemma 2, this can be done in O(nτ) time in total.

Both sets of intervals can be computed in O(nτ) time. For the subsequent methods, however,
we need the start- and end points of the intervals in non-decreasing order and that the intervals
are maximal. Obtaining the sets such that the start- and end points are sorted can be done in
O(nτ log n) time in the following way. For each set we use two nested loops. The outer loop fixes

12 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

an entity and the inner loop ranges over the time-steps. In that way it is easy to compute the
intervals as maximal intervals. Whenever we compute start- or end points of an interval we can put
them into τ −1 buckets, namely one for each unit-time-interval, i.e. pair of consecutive time-steps.
As we can have at most O(n) start- or end points in each bucket, we can sort all of them in all
buckets in O(nτ log n) time. Combining the sorted sequences of each bucket results in a sorted
sequence of all start- and end points.

Lemma 10. In O(nτ log n) time and O(nτ) space, the sets SetNotFwg and SetFwd for an entity
ei can be computed such that all the start- and end points of the intervals in each set are output
in non-decreasing order.

Next, we define operations that take and return a set of intervals as input and output. We also
briefly describe how to compute these operations, if the set of intervals is given along with the
start- and end points in sorted order.

Combining Intervals: We call the first operation under consideration interval-combination
denoted as icx(S), where S is a set of intervals of R. The operation outputs a set of non-intersecting
intervals. Every point in R that is contained in at least x intervals of the input-set S will be in an
interval of the output-set. Also, for every point that is contained in an interval of the output-set,
there are at least x intervals in the input-set that all contain that point, see Figure 5. Note that
ic1(S) is the union of all intervals in S and ic|S|(S) is the intersection of all intervals in S. Let
S be a set of intervals where the start- and end points are given in sorted order. The operation
icx(S) can be computed by a parallel scan over the sorted start- and end points and keeping track
of how many intervals are currently ‘active’.

Lemma 11. Suppose S is a set of intervals. If the start- and end points of the intervals in S are
given in non-decreasing order, then we can compute icx(S) in O(|S|) time.

set S of intervals:

ic1(S):
ic2(S):
ic3(S):

Fig. 5. The set S of intervals on the real line and the results after applying the icx operation for x ∈
{1, 2, 3}. Note that icx(S) = ∅ for all x ≥ 4 as the intersection of any 4 intervals in S is empty.

Clipping Intervals: We also define another operation, which modifies single intervals. For
an interval I = {txa

, txb
}, we cut or clip a part of length k at the beginning of I. If the resulting

interval I ′ is non-empty, then that interval I ′ is the result of the operation. This operation can
also be applied to all intervals of an entire set (cf. Figure 6), such that the order of the start- and
end points of the intervals remains stable.

Lemma 12. Let be given a set S of intervals, where the start- and end points of the intervals in
S are given in non-decreasing order. We can compute S′ := {I ′ | I ′ = clipk(I), I ∈ S} and output
the start- and end points of all intervals in S′ in non-decreasing order in O(|S|) time.

5.2 Solving LP Problems with a Non-Varying Subset of Followers

LP-report-all

We first look at the non-varying-subset version. In the previous section we have seen that we
can compute the interval-set SetFwd in O(nτ log n) time, where an interval in this set means

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 13

set S of intervals:

clipk(S): ()

Fig. 6. The set S of intervals on the real line and the results after applying the clipk operation. For the
clipk operation, the length of the interval in parentheses determines k.

that an entity follows ei for the time of the interval. Now, we are going to modify the intervals
in the set SetFwd . For each interval I = {txa

, txb
} ∈ SetFwd , we apply the operation clipk to

obtain a set SetFwdclipped := {I ′ | I ′ = clipk(I), I ∈ SetFwd}. Note that SetFwdclipped (see
Figure 7) only contains intervals whose originals had length at least k. The meaning of an interval
I ′ ∈ SetFwdclipped is that there is an entity such that at each time-point t ∈ I ′ this entity has
already followed ei for at least k time units (which is not necessarily the same as k unit-time
intervals). The set SetFwdclipped can be computed in linear time with respect to the size of SetFwd ,
and this can be implemented such that the order of the (start- and end points of the) intervals
remains stable.

We also clip the intervals of the set SetNotFwg to obtain a set SetNotFwgclipped := {I ′ | I ′ =
clipk(I), I ∈ SetNotFwg} (see Figure 7). For each time-point in an interval in SetNotFwgclipped ,
we have that ei is not following any other entity for at least k time units.

4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8

e1

e2

e3

e4

e2 e3 e4

e1 e1 e1

e3 e2 e2

e4 e4 e3

setFwgclipped:

ic1(setFwgclipped):

ic2(setFwgclipped):

ic3(setFwgclipped):

setNotFwg:

results for m=1:

results for m=2:

results for m=3:

Fig. 7. Illustration of clipping and combining the intervals, where the intervals represent the follow-
behaviour of the entities in Figure 1. The result-intervals are shown for different values of m.

The next step is to compute yet another set S of intervals as an interim result using one of the
operations introduced in Section 5.1, S := icm(SetFwdclipped). For any time-point in an interval
in S there are at least m entities following ei, where each of those entities already followed ei for
at least k time units. Finally, we combine the information represented by S and SetNotFwgclipped .
What we need is similar to a logical ‘and’ between intervals of those two sets, and this can be done
by applying the icx again to obtain a set of result-intervals, result := ic2(S ∪ SetNotFwgclipped).
Note that the start- and end points of the set S ∪ SetNotFwgclipped can be sorted in linear time if
the start- and end points of S and SetNotFwgclipped are sorted. The set result contains all intervals
for which ei is a leader of at least m entities for at least k time units. If we would like to report

14 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

the leadership patterns of all entities, we apply the above method to each entity. Hence, we can
conclude with the following lemma.

Lemma 13. Let be given n trajectories over τ time-steps. Reporting all time intervals where there
is an entity a leader of a non-varying subset of at least m entities for at least k time units, can be
done in O(n2τ log n) time and O(nτ) space.

LP-max-size

We can use the sets SetNotFwgclipped and SetFwdclipped , where the intervals are given in non-
decreasing order, to find the maximum mmax for which ei is a leader of a non-varying set of mmax

entities for at least k time units. To that end, we do not collapse the set SetFwdclipped into a
set S as described above, but we utilise a parallel scan over the intervals in SetNotFwgclipped and
SetFwdclipped .

By a parallel scan we mean moving an imaginary vertical line over the horizontally arranged
intervals, stopping at certain points and performing certain actions. In our case the points where
we stop are the start- and end points of the intervals. For any position of the scan-line we say an
interval I is active, if the scan-line ℓ intersects interval I.

During the parallel scan, we keep track of the number of active intervals in SetFwdclipped , where
the intervals in SetNotFwgclipped are used as a mask (see Figure 8). All this can be done in O(nτ)
time.

2 0 0 1 2 3

4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8

e1

e2

e3

e4

e2 e3 e4

e1 e1 e1

e3 e2 e2

e4 e4 e3

setFwgclipped:

setNotFwg:

Fig. 8. Illustrating the parallel scan approach. The shaded region indicates how the SetNotFwg intervals
are used as a mask. The numbers indicate the number of active SetFwd intervals.

Lemma 14. Let be given n trajectories over τ time-steps. Computing the maximum size of a
non-varying subset of followers which follow a leader for at least k time units, can be done in
O(n2τ log n) time and O(nτ) space.

LP-max-length

A method similar to the one presented above cannot be used directly, as the sets of intervals
are computed for specified values of k. We could use binary search on k, however, this would
add another log τ factor to the running time. The method described in this section also builds
upon the sets SetNotFwg and SetFwd of intervals, introduced in Section 5.1. It finds the largest
kmax, such that there is a non-varying subset of at least m entities following entity ei for kmax

time-units. However, it can also be used to report patterns where ei is a leader of at least m
non-varying followers for at least k time-steps. We do this by performing a parallel scan over the
sets of intervals, assuming they are given such that the start- and end points of the intervals are
in non-decreasing order.

During the parallel scan we keep track of the active intervals in SetNotFwg. Note that only
one interval I ∈ SetNotFwg can be active at a time. By keeping a pointer p1 to I, we know for

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 15

every time-point t, whether ei is following any other entity. If ei is following any other entity, then
there is no interval in SetNotFwg active at time t (and p1 becomes a null-pointer). On the other
hand, if there is an interval I ∈ SetNotFwg active at t, then we can compute for how long ei is
not following any other entity.

We also keep track of how many entities follow ei and for how long. To this end, let t be a
time-point during the parallel scan. Let A ⊆ SetFwd be the set of all intervals in SetFwd that are
active at time t. We will not maintain A, but only a variable m′ with m′ = |A| (initially m′ := 0).
Furthermore, we will maintain a pointer p2 to the interval in A with the m-th largest end point.
If A contains less than m intervals, then p2 points to some interval. (As we will not use pointer
p2 if A contains less than m intervals it is not important where p2 points to in that case.)

Before the parallel scan, we initialise kmax := 0, and after the parallel scan kmax will be the
length of the longest leadership pattern with ei as leader of a non-varying set of at least m entities.
We also introduce an artificial interval which starts and ends before any other interval starts and
we initialise p2 to point to that interval. This interval is introduced merely to have pointer p2 well
initialised. The parallel scan does not take this interval into consideration. As mentioned above the
points where we stop with the scan-line are the start- and end points of the intervals, and if two
such points have the same time, we process them one after the other, as if one was infinitesimally
later than the other. By maintaining all invariants it is easy to see that for every position of the
scan-line with corresponding time t, we can check if there are at least m entities following ei, i.e.
if m′ ≥ m. In the case that there are at least m followers of ei, we also can determine for how long
in the future all these entities will follow ei, by using the pointer p2. Furthermore, we can check
if ei is following any other entity (by using p1), and if not for how long in the future ei will not
follow any other entity. Therefore, we can determine whether there is a leadership pattern, with
ei as leader of a non-varying set of at least m entities, and if there is such a pattern, we can also
determine its length k′. If k′ > kmax then we perform an update kmax := k′.

By doing this parallel scan approach for each entity, we can compute the overall longest duration
leadership pattern.

Lemma 15. Let be given n trajectories over τ time-steps. Computing the maximum length of
a leadership pattern with a non-varying subset of followers of size at least m, can be done in
O(n2τ log n) time and O(nτ) space.

5.3 Solving LP Problems with a Varying Subset of Followers

LP-report-all

After considering the case for the non-varying subset in Section 5.2, the case for a varying subset
is rather easy. Here, we do not require that all entities follow ei for k time-units. Hence, with
the terminology as used before we compute a set S := icm(SetFwd). For any time-point in an
interval in S there are at least m entities following ei. As ei still has to be followed for at least
k time-units, we clip all intervals in S to obtain S′ := {I ′ | I ′ = clipk(I), I ∈ S}. As before, our
last step is to combine S′ and SetNotFwgclipped to obtain the set of result-intervals, result :=
ic2(S

′ ∪ SetNotFwgclipped).

Lemma 16. Let be given n trajectories over τ time-steps. Reporting all time intervals where there
is an entity a leader of a varying subset of at least m entities for at least k time units, can be done
in O(n2τ log n) time and O(nτ) space.

LP-max-size

In this case, we can use the approach mentioned in Section 4.3, where we spend additional time
for binary search on m to find mmax.

Lemma 17. Let be given n trajectories over τ time-steps. Computing the maximum size of a
varying subset of followers which follow a leader for at least k time units, can be done O(n2τ log n)
time and O(nτ) space.

16 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

LP-max-length

To find the length of a longest duration leadership pattern of a varying set of at least m entities,
we can use a similar approach as in Section 5.3. We also compute a set S := icm(SetFwd), such
that for each time-point in an interval I ∈ S, we know that there are at least m followers of ei.
To combine this with the information when ei is not following any other entity, we apply the
operation icx once again to obtain result := ic2(S ∪ SetNotFwg). Now, for any interval in result
it holds that ei is not following any other entity, and also that ei is followed by at least m entities.
Searching for the length of the longest interval in result solves the problem at hand for entity ei.

Lemma 18. Let be given n trajectories over τ time-steps. Computing the maximum length of a
leadership pattern with a varying subset of followers of size at least m, can be done O(n2τ log n)
time and O(nτ) space.

5.4 Hardness in the Continuous Case

It is likely that every algorithm for the continuous version of the leadership problem that detects
leadership patterns between two consecutive time-steps in a set of n trajectories requires Ω(n2)
time in the worst case. This can be shown by a transformation from the problem Point-on-3-

lines, which was proven to be 3-sum-hard [18]. There is no subquadratic time algorithm known
for those problems. For a weak model of computation a lower bound of Ω(n2) for those problems
exists [15]. We can conclude with the following lemma (see [3] for more details).

Lemma 19. Finding continuous leadership patterns between two consecutive time-steps in a set
of trajectories is 3-sum-hard.

6 Experimental Evaluation

This section is devoted to reporting the experimental results. The algorithms were implemented in
Java4 and all experiments were performed on a Linux operated PC with an Intel 3.6 GHz processor
and 2 GB of main memory.

6.1 Input Data

All input files were generated artificially with NetLogo [62]. More specifically, we modified Net-
Logo’s Flocking Model [61] such that entities do not wrap around the world-borders, but will
be repulsed smoothly from walls, see Figure 9. Furthermore, we added some code for moderate
random changes in an entity’s direction and saving the coordinates into a file. There are many
parameters to modify the behaviour of the entities and thus also to modify how many flocks and
leadership-patterns are created. However, we have no direct control over the exact number or
length or size of patterns.

We generated files with variable number of entities (128-4096), two different sizes of the under-
lying universe U (i.e. coordinate space 512×512 and 1024×1024) and two different characteristics
CH (i.e. CH = u and CH = c) of the entity distribution. CH = u means that the parameters
of the Flocking Model were chosen such that the entities are more uniformly distributed, i.e. only
small clusters emerge. Flocks (and thus leadership patterns) still exist but their size and length
are likely to be smaller than those of the other characteristic. CH = c means that the parame-
ters of the Flocking Model were chosen such that the entities form few but rather large clusters,
and hence, the flocks tend to contain more entities and have a longer duration. The number of
time-steps is τ = 1000.

4 Java was chosen because this increases the platform independence and it makes it easier to integrate
the code into an existing larger framework.

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 17

Fig. 9. This screenshot of NetLogo’s modified Flocking model shows the trajectories of 32 entities in a
universe with side lengths 128 × 128, run for 100 time-steps.

6.2 Methods

We performed experiments with two variants of our algorithms for the discrete case. The first one
is a straight forward implementation of the method described in Section 4. This method contains
(among others) two nested loops ranging over all entities. The disadvantage from a practical
point of view is that when looking for entities that might be in a front-region, then also entities
that are too far away will be considered. Therefore, our second method tries to overcome this
drawback by dividing the underlying plane into buckets (squares of side length r). Now when
looking for entities that might be in a front-region, only those entities will be considered that are
in the nine neighbouring buckets (including the bucket at the centre). Note that for each of our
leadership problems, all methods always compute all arrays from scratch. Especially the arrays
IntervalsNotFwg and IntervalsFwg could be used three times after computing them once. For an
easier comparison however, we refrained from doing so.

6.3 Results

Tables 1 and 2 show the results of our algorithms for m = 10, k = 20, r = 20, α = π and
β = π

2
. From our point of view the running times and their asymptotic behaviour are much more

interesting than for example the exact number of patterns found as we deal with artificial data.
Nevertheless, in Table 1 we can see how many entities have been leaders (leaders), the number of
leadership patterns found (report-all), the length of a longest duration pattern (max-length) and
the number of entities in a pattern with most followers (max-size). Note that patterns with length
> k will be reported multiple times as patterns of length k.

We observed that the vast majority of the running time is spent on computing the arrays
IntervalsNotFwg and IntervalsFwg (which can be done in O(n2τ) time). Once these two arrays are
computed, computing more arrays and/or extracting information to solve the leadership problem
is very efficient (linear time). Therefore, our methods for the three different leadership problems
result almost always in the same running times (they differ on average less than three percent),
as they compute all arrays from scratch. Hence, Table 2 depicts the running times of our methods
only for the report-all leadership problem.

18 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

n U CH non-varying varying
leaders report-all max-length max-size leaders report-all max-length max-size

128 5122 c 2 89 37 23 2 161 41 23
256 5122 c 10 211 56 66 12 389 71 71
512 5122 c 11 329 44 200 13 520 68 238

1024 5122 c 27 676 46 197 31 1142 66 208
2048 5122 c 33 689 57 384 36 1022 72 419
4096 5122 c 44 966 55 812 50 1541 78 959
128 10242 c 0 0 0 4 0 0 0 4
256 10242 c 0 0 2 8 0 0 2 8
512 10242 c 19 360 46 26 27 643 60 26

1024 10242 c 36 954 53 166 47 1591 73 183
2048 10242 c 80 1536 47 219 97 2833 101 224
4096 10242 c 98 2521 59 257 117 4299 78 324
128 5122 u 0 0 0 3 0 0 0 4
256 5122 u 0 0 9 7 0 0 13 7
512 5122 u 1 7 25 10 6 54 41 13

1024 5122 u 5 15 24 13 9 73 32 21
2048 5122 u 8 40 34 15 29 187 40 25
4096 5122 u 6 36 29 14 19 109 34 37
128 10242 u 0 0 0 3 0 0 0 3
256 10242 u 0 0 0 5 0 0 0 5
512 10242 u 0 0 0 7 0 0 0 7

1024 10242 u 1 1 20 10 1 2 20 10
2048 10242 u 6 26 25 11 20 152 40 17
4096 10242 u 16 87 42 24 49 279 42 24

Table 1. Resulting values of our methods.

n U CH without buckets with buckets
non-varying varying non-varying varying

128 5122 c 9.44 9.56 2.35 2.86
256 5122 c 40.91 41.89 12.58 14.69
512 5122 c 203.53 212.88 102.74 119.15

1024 5122 c 664.01 683.83 191.85 221.47
2048 5122 c 3393.17 3457.26 972.34 1099.19
4096 5122 c 14903.81 15046.69 5250.53 5651.59
128 10242 c 8.19 8.47 0.91 1.24
256 10242 c 32.79 33.82 2.83 3.63
512 10242 c 132.97 139.13 12.00 15.01

1024 10242 c 595.24 622.29 110.06 129.27
2048 10242 c 2809.12 2875.07 324.43 375.57
4096 10242 c 11143.28 11300.18 1477.70 1705.00
128 5122 u 8.37 8.08 1.33 1.52
256 5122 u 32.73 32.96 3.74 4.67
512 5122 u 129.16 130.56 12.88 15.91

1024 5122 u 529.79 523.12 47.54 54.52
2048 5122 u 2184.42 2178.64 221.99 234.74
4096 5122 u 11126.42 10978.71 1024.22 1037.39
128 10242 u 7.85 7.86 0.87 1.04
256 10242 u 31.45 32.79 2.28 3.01
512 10242 u 127.92 128.21 7.47 8.80

1024 10242 u 512.59 515.91 24.67 27.96
2048 10242 u 2268.77 2251.06 89.00 95.24
4096 10242 u 11201.63 11295.04 350.20 381.82

Table 2. Running times of our methods for the report-all problem. Reported times are in seconds.

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 19

6.4 Observations

Non-Varying vs. Varying: As we could expect running times for the patterns with a varying
subset of followers are often higher, as one more array is computed for the ‘varying’ problems.
However, this increase is very marginal compared to other influencing factors. We can also observe
that the values for the ‘varying’ patterns are at least as big (sometimes slightly larger) as for
the ‘non-varying’ patterns. This is because a non-varying pattern is also a varying pattern by
definition.

Without Buckets vs. With Buckets: The approach to subdivide the space into buckets does
not influence the reported values of our methods, however, it can have an impressive impact on
the running times (see Figures 10 and 11). Depending on the input characteristics, we can observe
speed-up factors between 2 and 32. The running time of the methods without ‘buckets’ is clearly
quadratic in the number of entities. An asymptotic behaviour of the methods with ‘buckets’ is
more difficult to identify, but note that also this method has a quadratic worst case running time.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 512 1024 1536 2048 2560 3072 3584 4096

CH=c, without buckets
CH=c, with buckets

CH=u, without buckets
CH=u, with buckets

Fig. 10. Running times depending on input size for
non-varying report-all patterns for U = 5122.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 512 1024 1536 2048 2560 3072 3584 4096

U=512, without buckets
U=512, with buckets

U=1024, without buckets
U=1024, with buckets

Fig. 11. Running times depending on input size for
non-varying report-all patterns for CH = u.

CH = u vs. CH = c: Almost always the input files with characteristic CH = c contain
more patterns, longer patterns and larger patterns, which was expected as those files are much
more likely to contain more and larger flocks. Hence, the input files with CH = u result in smaller
running times (see also Figure 10). Interestingly these characteristics also indicate that the ‘bucket’
approach for speeding-up the computations has its limitations, because the speed-up factor of the
‘buckets’ method is strongly influenced by the characteristics. For CH = u, we observe speed-up
factors around between 5 and 11 for the instances with U = 5122, and between 7 and 32 for the
instances with U = 10242. On the other hand, for CH = c, the speed-up factors are between 2
and 4 for the instances with U = 5122, and between 5 and 11 for the instances with U = 10242.
This can be explained by noting that the files with characteristic CH = c contain more and bigger
flocks, and hence it is more likely that our algorithms encounter neighbouring buckets that are
filled with more entities.

U = 5122 vs. U = 10242: The difference between the universe with U = 5122 and U = 10242

is that the former is much denser when filled with the same number of entities. As a result, in the
larger universe (U = 10242) less and smaller patterns exist. Also the running times are affected
(see Figure 11). The methods with buckets run faster on instances with a larger universe, because
we have more buckets and therefore, buckets are likely to contain less entities on average.

20 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

7 Discussion

The analysis of the interrelations of moving individuals has in the last five years attracted increas-
ing attention, as a general reaction to the striking need for more powerful methods for surveillance
and geospatial intelligence. Geographical information scientists are commissioned to develop meth-
ods that detect the expected and discover the unexpected from massive streams of disparate data,
potentially originating from various sources [58]. Such methods need to be scalable, flexible and
reliable. This section discusses our leadership approach with respect to these three properties and
discusses the found algorithm running times.

Balancing the matching of formalised movement patterns (such as the presented leadership)
with the inferring of unexpected space-time behaviours from visualised space-time paths, we argue
that the former copes much better with increasing data sets. Whereas inferring form visualisation
might be adequate for the analysis of individual events of interest [30], keeping track of hun-
dreds of individuals cruising in the space-time aquarium is literally impossible [34]. By contrast,
when detecting movement patterns such as flock or leadership, the number of entities n is just a
performance factor but not an obfuscation factor.

Approaches detecting leader and follower relationships using pair-wise cross-correlation of tra-
jectories suffer from their intrinsic limitation to very small numbers of involved entities. Thus,
lead-follow events in [54], for example, can only be detected for pairs of individuals at a time. Our
leadership pattern, in contrast, allows individuals to lead groups of followers. Since they operate on
local-instantaneous events they can be detected in trajectories of variable lengths, as long as there
is certain temporal overlap. Furthermore the approach in [54] has rather demanding constraints
with respect to the analysed data set. It requires trajectories of equal length and strongly syn-
chronous sampling. Even though we assume the input data to have the same characteristics, our
algorithms for the continuous case can be easily applied to data without a synchronised sampling.
The running times for sorting the sets of intervals for an entity would slightly increase, however,
from O(nτ log n) to O(nτ log nτ). We argue that our leadership algorithms are thus flexible and
applicable to diverse data from various sources.

Movement patterns that are defined from the geometric arrangement of the involved entities
(e.g. leadership), are more reliable than movement patterns that base on the intermediate step of
an analysis matrix, as do the REMO patterns depend on an analysis matrix in Laube et al. [37].
The deterministic discretisation of the movement descriptors in eight cardinal direction classes
introduces edge effects. An example shall illustrate such edge effects. Let 22.5◦ be one threshold of
the discrete movement azimuth class ‘North’. Let furthermore the pattern under study be a flock
pattern of four entities moving in the same direction at any time t. Why should a set of entities S1

with azimuths [21◦, 22◦, 22◦, 21◦] be a flock when another set S2 with azimuths [22◦, 23◦, 23◦, 22◦]
is not? A definition requiring the entities to have a mean azimuth and some variance (e.g. ±22.5◦)
is a much more natural and thus reliable definition of flock. The definition of leadership in this
paper follows for exactly the same reasons the road of using a geometrical arrangement instead of
scanning a discretised matrix.

When comparing the running times in this article with those reported in [5], we observe that
the running times in the present work are much higher. This is because the used methods are
different. The methods in [5] are faster but only report patterns of a specified length with a
specified start- and end-time. The methods in this paper, however, are more flexible. Once the
arrays IntervalsNotFwg and IntervalsFwg are computed we can very efficiently use them to report
patterns of different lengths, and with different start- and end-times. We also developed and
implemented an approximation algorithm and performed initial experiments. They show a better
asymptotic behaviour of the approximation algorithm. However, the constant factors seem to be
too large for practical purposes, because for our test-files the exact algorithms always outperformed
the approximation algorithm. More details on this algorithm can be found in [3].

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 21

8 Conclusions and Outlook

Movement patterns detect structure in large tracking data sets and are thus key to a better
understanding of the interactions amongst moving agents. We provide a formal description of the
pattern ‘leadership’ and subsequently algorithms for its efficient detection. ‘Leadership’ describes
the event or process of one individual in front leading the movement of a group. Our approach
is inspired by movement patterns documented in the animal behaviour and behavioural ecology
literature.

Our experiments give indications which input-size can be processed within a reasonable amount
of time, and they have shown that we are able to efficiently report leadership patterns. The resulting
running times match the theoretical bounds, however for improved methods (with buckets) the
running times strongly depend on the characteristics of the instance.

In this article we assumed that all the trajectories fit into main memory. If this is not the case
then we would have to develop I/O-efficient algorithms or use spatio-temporal index structures.
Both these techniques would probably improve performance if the input does not fit into main
memory. However, this is an extension that would require much more future research.

One drawback of the given definition of leadership is that a leader has to be in the front region
of all followers. For instance, for a very big flock of gnus this definition might not be applicable,
as some gnus at the end of the flock are too far away from the front-line to be able to see leading
animals. Hence, one direction for future research could be the definition and analysis of cascading
leaders or followers, where a cascading follower is a follower of a leader or a follower of another
cascading follower.

For the many fields interested in movement, the overall challenge lies in relating movement pat-
terns with the surrounding environment, in order to understand where, when and ultimately why
the agents move the way they do. Conceptualising detectable movement patterns and the devel-
opment of algorithms for their detection is a first important step towards this ambitious long-term
goal. With its traditional spatial awareness, computational geometry can make immense contri-
butions to the theoretical framework underlying movement analysis in geographical information
science, behavioural ecology or surveillance and security analysis.

Acknowledgements

The authors wish to thank Karin Schütz, AgResearch Ruakura, Hamilton, New Zealand for valu-
able commets on animal movement patterns, Bojan Djordjevic for implementing the algorithms
and the anonymous reviewers of this and earlier versions of this article.

References

1. P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. Journal of Computer and System
Sciences, 66(1):207–243, 2003.

2. G. Al-Naymat, S. Chawla, and J. Gudmundsson. Dimensionality reduction for long duration and
complex spatio-temporal queries. In Proceedings of the 22nd ACM Symposium on Applied Computing,
pages 393–397. ACM, 2007.

3. M. Andersson, J. Gudmundsson, P. Laube, and T. Wolle. Reporting leaders and followers among
trajectories of moving point objects. Technical Report PA006075, National ICT Australia, 2006.
http://www.nicta.com.au, Extended abstract in Proceedings of the 22nd ACM Symposium on Applied
Computing, pages 3–7. ACM, 2007.

4. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN ’00: Proceedings of the
4th Latin American Symposium on Theoretical Informatics, volume 1776 of Lecture Notes In Computer
Science, pages 88–94, London, UK, 2000. Springer-Verlag.

5. M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting flock patterns. In Proceedings of
the 14th European Symposium on Algorithms (ESA 2006), volume 4168 of Lecture Notes in Computer
Science, pages 660–671. Springer, 2006.

6. H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal data reduction with deterministic error
bounds. The VLDB Journal, 15(3):211–228, 2006.

22 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

7. S. M. C. Cavalcanti and F. F. Knowlton. Evaluation of physical and behavioral traits of llamas
associated with aggressiveness toward sheep-threatening canids. Applied Animal Behaviour Science,
61(2):143–158, 1998.

8. N. R. Chrisman. Beyond the Snapshot: Changing the Approach to Change, Error, and Process. In M. J.
Egenhofer and R. G. Golledge, editors, Spatial and Temporal Reasoning in Geographic Information
Systems, pages 85–93. Oxford University Press, Oxford, UK, 1998.

9. L. Conradt and T. J. Roper. Group decision-making in animals. Nature, 421(6919):155–158, 2003.

10. M. D’Auria, M. Nanni, and D. Pedreschi. Time-focused density-based clustering of trajectories of
moving objects. In Proceedings of the Workshop on Mining Spatio-temporal Data (MSTD-2005),
Porto, 2005.

11. C. Du Mouza and P. Rigaux. Mobility patterns. GeoInformatica, 9(4):297–319, 2005.

12. B. Dumont, A. Boissy, C. Achard, A. M. Sibbald, and H. W. Erhard. Consistency of animal order
in spontaneous group movements allows the measurement of leadership in a group of grazing heifers.
Applied Animal Behaviour Science, 95(1-2):55–66, 2005.

13. J. A. Dykes and D. M. Mountain. Seeking structure in records of spatio-temporal behaviour: visu-
alization issues, efforts and application. Computational Statistics and Data Analysis, 43(4):581–603,
2003.

14. N. Eagle and A. Pentland. Reality mining: sensing complex social systems. Personal and Ubiquitous
Computing, 10(4):255–268, 2006.

15. J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical degeneracies. Discrete
& Computational Geometry, 13:41–57, 1995.

16. M. Erwig and R. H. Güting. Spatio-Temporal Data Types: An Approach to Modeling and Querying
Moving Objects in Databases. GeoInformatica, 3(3):269–296, 1999.

17. A. U. Frank. Socio-Economic Units: Their Life and Motion. In A. U. Frank, J. Raper, and J. P.
Cheylan, editors, Life and motion of socio-economic units, volume 8 of GISDATA, pages 21–34. Taylor
& Francis, London, 2001.

18. A. Gajentaan and M. H. Overmars. n2-hard problems in computational geometry. Technical Report
1993-15, Department of Coumputer Science, Utrecht University, The Netherlands, 1993.

19. J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and T. Wolle. Compressing spatio-temporal
trajectories. Manuscript, July 2007.

20. J. Gudmundsson and M. van Kreveld. Computing longest duration flocks in trajectory data. In
Proceedings of the 14th ACM Symposium on Advances in GIS, pages 35–42, 2006.

21. J. Gudmundsson, M. van Kreveld, and B. Speckmann. Efficient detection of motion patterns in
spatio-temporal sets. GeoInformatica, 11(2):195–215, 2007.

22. S. Gueron and S. A. Levin. Self-Organization of Front Patterns in Large Wildebeest Herds. Journal
of theoretical Biology, 165(4):541–552, 1993.

23. R. Güting, M. H. Boehlen, M. Erwig, C. S. Jensen, N. Lorentzos, E. Nardelli, M. Schneider, and
M. Vazirgiannis. A Foundation for Representing and Querying Moving Objects. ACM Transactions
on Database Systems (TODS), 2520(1):1–42, 2000.

24. R. Güting, M. H. Boehlen, M. Erwig, C. S. Jensen, N. Lorentzos, E. Nardelli, M. Schneider, and
J. R. R. Viqueira. Spatio-temporal Models and Languages: An Approach Based on Data Types. In
M. Koubarakis, T. Sellis, A. U. Frank, S. Grumbach, R. H. Gueting, C. S. Jensen, N. Lorentzos,
Y. Manolopoulos, E. Nardelli, B. Pernici, H. J. Schek, M. Scholl, B. Theodoulidis, and N. Tryfona,
editors, Spatio-Temporal Databases: The CHOROCHRONOS Approach, volume 2520 of LNCS, pages
117–176. Springer, Berlin, 2003.

25. R. H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann Publishers, 2005.

26. I. A. R. Hulbert. GPS and its Use in Animal Telemetry: The next five Years. In A. M. Sibbald
and I. J. Gordon, editors, Proceedings of the Conference on Tracking Animals with GPS, pages 51–60,
Aberdeen, UK, 2001. Macaulay Insitute.

27. Y. Inada and K. Kawachi. Order and flexibility in the motion of fish schools. Journal of theoretical
Biology, 214(3):371–387, 2002.

28. Y. Ishikawa, Y. Tsukamoto, and H. Kitagawa. Extracting mobility statistics from indexed spatio-
temporal datasets. In Proc. of the 2nd Workshop on Spatio-Temporal Database Management
(STDBM), pages 9–16, 2004.

29. A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents using
nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6):988–1001, 2003.

30. T. Kapler, R. Harper, and W. Wright. Correlating events with tracked movement in time and space:
A geotime case study, 2005. Presented at the 2005 Intelligence Analysis Conference, Washington, DC.

Reporting Leaders and Followers Among Trajectories of Moving Point Objects 23

31. G. Kollios, S. Sclaroff, and M. Betke. Motion mining: discovering spatio-temporal patterns in databases
of human motion. In Proceedings of the ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, 2001.

32. M. Koubarakis, Y. Theodoridis, and T. Sellis. Spatio-Temporal Databases in the Years Ahead. In
M. Koubarakis, T. Sellis, A. U. Frank, S. Grumbach, R. H. Gueting, C. S. Jensen, N. Lorentzos,
Y. Manolopoulos, E. Nardelli, B. Pernici, H. J. Schek, M. Scholl, B. Theodoulidis, and N. Tryfona,
editors, Spatio-Temporal Databases: The CHOROCHRONOS Approach, volume 2520 of LNCS, pages
345–347. Springer, Berlin, 2003.

33. J. Krause and G. D. Ruxton. Living in Groups. Oxford Series in Ecology and Evolution. Oxford
University Press, New York, NY, 2002.

34. M. P. Kwan. Interactive geovisualization of activity-travel patterns using three dimensional geograph-
ical information systems: A methodological exploration with a large data set. Transportation Research
Part C, 8(1–6):185–203, 2000.

35. R. F. Lachlan, L. Crooks, and K. N. Laland. Who follows whom? Shoaling preferences and social
learning of foraging information in guppies. Animal Behaviour, 56(1):181–190, 1998.

36. P. Laube and S. Imfeld. Analyzing relative motion within groups of trackable moving point objects.
In M. J. Egenhofer and D. M. Mark, editors, Geographic Information Science 2002, volume 2478 of
Lecture Notes in Computer Science, pages 132–144, Berlin, 2002. Springer.

37. P. Laube, S. Imfeld, and R. Weibel. Discovering relative motion patterns in groups of moving point
objects. International Journal of Geographical Information Science, 19(6):639–668, 2005.

38. P. Laube and R.S. Purves. An approach to evaluating motion pattern detection techniques in spatio-
temporal data. Computers, Environment and Urban Systems, 30(3):347–374, 2006.

39. P. Laube, M. van Kreveld, and S. Imfeld. Finding REMO – detecting relative motion patterns in
geospatial lifelines. In P. F. Fisher, editor, Developments in Spatial Data Handling: Proceedings of the
11th International Symposium on Spatial Data Handling, pages 201–214, Berlin, 2004. Springer.

40. J. B. Leca, N. Gunst, B. Thierry, and O. Petit. Distributed leadership in semifree-ranging white-faced
capuchin monkeys. Animal Behaviour, 66:1045–1052, 2003.

41. Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, Seattle, WA, USA, 2004. ACM
Press.

42. N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. Cheung. Mining, indexing,
and querying historical spatiotemporal data. In Proceedings of the 10th ACM SIGKDD International
Conference On Knowledge Discovery and Data Mining, pages 236–245. ACM, 2004.

43. D. M. Mark. Geospatial Lifelines. In Integrating Spatial and Temporal Databases, volume 98471.
Dagstuhl Seminars, 1998.

44. H. J. Miller and J. Han. Geographic data mining and knowledge discovery: An Overview. In H. J.
Miller and J. Han, editors, Geographic data mining and knowledge discovery, pages 3–32. Taylor &
Francis, London, UK, 2001.

45. K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning: an efficient method
for continuous nearest neighbor monitoring. In Proceedings of the 2005 ACM SIGMOD Conference
on Management of Data, pages 634–645, 2005.

46. R. T. Ng. Detecting outliers from large datasets. In H. J. Miller and J. Han, editors, Geographic data
mining and knowledge discovery, pages 218–235. Taylor & Francis, London, UK, 2001.

47. R. O. Peterson, A. K. Jacobs, T. D. Drummer, L. D. Mech, and D. W. Smith. Leadership behavior
in relation to dominande and reproductive status in gray wolves, canis lupus. Canadian Journal of
Zoology, 80(8):1405–1412, 2002.

48. F. Porikli. Trajectory Distance Metric Using Hidden Markov Model based Representation. In Pro-
ceedings of the 6th IEEE European Conference on Computer Vision, Workshop on PETS, Prague,
2004.

49. Y. Qu, C. Wang, and X. S. Wang. Supporting fast search in time series for movement patterns in
multiple scales. In Seventh international conference on Information and knowledge management, pages
251–258, Bethesda, Maryland, United States, 1998. ACM Press.

50. S. A. Rands, G. Cowlishaw, R. A. Pettifor, J. M. Rowcliffe, and R. A. Johnstone. Spontaneous
emergence of leaders and followers in foraging pairs. Nature, 423(6938):432–434, 2003.

51. J. Raper. The Dimensions of GIScience, 2002. Keynote speech of GIScience 2002.

52. C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th
annual conference on Computer graphics and interactive techniques, volume 21, pages 25–34. ACM
Press, 1987.

24 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle

53. J. F. Roddick, K. Hornsby, and M. Spiliopoulou. An Updated Bibliography of Temporal, Spatial, and
Spatio-temporal Data Mining Research. In J. F. Roddick and K. Hornsby, editors, Temporal, spatial
and spatio-temporal data mining, TSDM 2000, volume 2007 of Lecture Notes in Artificial Intelligence,
pages 147–163, Berlin, 2001. Springer.

54. T. Shirabe. Correlation analysis of discrete motions. In Proceedings of the Fourth International
Conference on Geographic Information Science, GIScience 2006, volume 4197 of Lecture Notes In
Computer Science, pages 370–382, Berlin, 2006. Springer-Verlag.

55. G. Sinha and D. M. Mark. Measuring similarity between geospatial lifelines in studies of environmental
health. Journal of Geographical Systems, 7(1):115–136, 2005.

56. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In
13th International Conference on Data Engineering (ICDE13), 1997.

57. C. S. Smyth. Mining mobile trajectories. In H. J. Miller and J. Han, editors, Geographic data mining
and knowledge discovery, pages 337–361. Taylor & Francis, London, UK, 2001.

58. J. J. Thomas and K. A. Cook. A visual analytics agenda. IEEE Computer Graphics and Applications,
26(1):10–13, 2006.

59. S. Tisue and U. Wilensky. NetLogo: A Simple Environment for Modeling Complexity. In International
Conference on Complex Systems, Boston, 2004.

60. F. Verhein and S. Chawla. Mining spatio-temporal association rules, sources, sinks, stationary regions
and thoroughfares in object mobility databases. In Proceedings of the 11th International Conference on
Database Systems for Advanced Applications (DASFAA), volume 3882 of Lecture Notes in Computer
Science, pages 187–201. Springer, 2006.

61. U. Wilensky. NetLogo Flocking model, 1998. http://ccl.northwestern.edu/netlogo/models/Flocking.
62. U. Wilensky. NetLogo (and NetLogo User Manual), 1999. http://ccl.northwestern.edu/netlogo.
63. O. Wolfson and E. Mena. Applications of Moving Objects Databases. In Y. Manolopoulos, A. Pa-

padopoulos, and M. Vassilakopoulos, editors, Spatial Databases: Technologies, Techniques and Trends.
Idea group Co., 2004.

64. O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and Solutions.
In M. Rafanelli and M. Jarke, editors, 10th International Conference on Scientific and Statistical
Database Management, Proceedings, Capri, Italy, July 1-3, 1998, pages 111–131. IEEE Computer
Society, 1998.

65. X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable processing of continuous k-nearest
neighbor queries in spatio-temporal databases. In Proc. of the 21st International Conference on Data
Engineering (ICDE 2005), pages 643–654, 2005.

