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Abstract. Despite the great number and variety of glaciers in

southern South America, in situ glacier mass-balance records

are extremely scarce and glacier–climate relationships are

still poorly understood in this region. Here we use the longest

(> 35 years) and most complete in situ mass-balance record,

available for the Echaurren Norte glacier (ECH) in the An-

des at ∼ 33.5◦ S, to develop a minimal glacier surface mass-

balance model that relies on nearby monthly precipitation

and air temperature data as forcing. This basic model is able

to explain 78 % of the variance in the annual glacier mass-

balance record over the 1978–2013 calibration period. An

attribution assessment identified precipitation variability as

the dominant forcing modulating annual mass balances at

ECH, with temperature variations likely playing a secondary

role. A regionally averaged series of mean annual streamflow

records from both sides of the Andes between∼ 30 and 37◦ S

is then used to estimate, through simple linear regression,

this glacier’s annual mass-balance variations since 1909. The

reconstruction model captures 68 % of the observed glacier

mass-balance variability and shows three periods of sus-

tained positive mass balances embedded in an overall neg-

ative trend over the past 105 years. The three periods of sus-

tained positive mass balances (centered in the 1920s–1930s,

in the 1980s and in the first decade of the 21st century) coin-

cide with several documented glacier advances in this region.

Similar trends observed in other shorter glacier mass-balance

series suggest that the Echaurren Norte glacier reconstruc-

tion is representative of larger-scale conditions and could be

useful for more detailed glaciological, hydrological and cli-

matological assessments in this portion of the Andes.
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Figure 1. Panel (a) depicts a map of the Central Andes of Chile and Argentina showing the location of the Echaurren Norte glacier (ECH),

Piloto Este glacier (PIL) and several smaller glaciers with mass-balance records in the Pascua Lama (PAS) and Cordillera de Colanguil (COL)

areas. The locations of the snowpack and streamflow stations discussed in the text are also shown (Tables 1 and 2). In panel (b) a general view

of the El Yeso area, showing the location of ECH, El Yeso Dam and the associated meteorological station is given. Laguna Negra is a natural

lake that receives the meltwater from ECH. Base image acquired on 5 January 2014 and downloaded from Google Earth. Panel (c) provides

a closer oblique view of Echaurren Norte as observed in 2014 and in the early 1970s (outlined in red and based on Peña and Narbona, 1978).

Note that the glacier has remained in roughly the same position but has thinned markedly over the last decades. Panel (d) shows seasonal

variations in temperature and precipitation at the lower reaches of ECH (3700 m a.s.l.) extrapolated from the El Yeso meteorological station

(see Sect. 2.2 for details). Note that the bulk of precipitation occurs during the coldest months of the year (December–March precipitation

only accounts for ∼ 5 % of the mean annual totals).

1 Introduction

The extratropical Andes, between ∼ 23 and 55◦ S, contain

a large number and variety of glaciers ranging from small

glacierets at elevations of over 6000 m in the high, arid An-

des of northern Chile and Argentina, to large outlet glaciers

that reach the sea in the humid southwestern portion of Patag-

onia and Tierra del Fuego. Altogether, these ice masses con-

centrate the largest glacierized area in the Southern Hemi-

sphere outside Antarctica and are highly valued as sources

of freshwater, as indicators of climatic change, as tourist at-

tractions and as environmental and cultural icons in differ-

ent sectors of the Andes. As reported for other mountainous

areas of the globe, glaciers in southern South America dis-

play a widespread retreating pattern that has usually been

attributed to warmer, and sometimes drier, climatic condi-

tions in this region (Villalba et al., 2003; Rignot et al., 2003;

Rivera et al., 2000, 2005; Masiokas et al., 2008, 2009; Le

Quesne et al., 2009; Pellicciotti et al., 2014). Quantitative

assessments of regional glacier mass-balance changes and

glacier–climate relationships are, however, seriously ham-

pered by the scarcity and short length of in situ glacier mass-

balance data and proximal climate records within the Andes.

The latest publication of the World Glacier Monitoring Ser-

vice (WGMS, 2013) reports annual mass-balance measure-

ments for seven extratropical Andean glaciers (five in Ar-

gentina, two in Chile). Four of these records start in 2010 and

are for small glaciers and glacierets located ca. 29.30◦ S, two

records are located between 32 and 34◦ S and start in the mid-

to-late 1970s and the remaining record from Tierra del Fuego

(54.8◦ S) starts in 2001. Discontinued, short-term glacier

mass-balance measurements (see e.g., Popovnin et al., 1999)

and recent programs initiated at new sites (e.g., Rivera et al.,

2005; Rabatel et al., 2011; Ruiz et al., 2013) complete the
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network of direct glacier mass-balance data currently avail-

able in southern South America. Although not optimal in

terms of spatial coverage, arguably the single most impor-

tant limitation of this network is the short period of time cov-

ered by consistent, reliable records. Of the two longest mass-

balance series mentioned above (Echaurren Norte and Piloto

Este glaciers in the Central Andes, see Table 1.1 in WGMS,

2013), only the series from Echaurren Norte (ECH) in Chile

(Fig. 1a–c) provides a complete record spanning more than

35 years. In fact, this series constitutes the longest direct

glacier mass-balance record in the Southern Hemisphere (see

Escobar et al., 1995a, b; DGA, 2010 and WGMS, 2013) and

is thus a “reference” glacier in the WGMS global assess-

ments. The mass-balance record from the Piloto Este glacier

(PIL; located ca. 100 km to the north in Argentina; Fig. 1a)

covers the 1979–2002 period and contains several data gaps

that have been interpolated using various techniques (Leiva

et al., 2007).

Many studies dealing with recent climate and glacier

changes in southern South America have pointed out the

shortness, poor quality or absence of climatic records at high-

elevation sites or in the proximity of glaciers in the Andes

(Villalba et al., 2003; Rivera et al., 2005; Masiokas et al.,

2008; Rasmussen et al., 2007; Falvey and Garreaud, 2009;

Pellicciotti et al., 2014; Vuillle et al., 2015). Given the lack of

suitable data, many climatic assessments have used records

from distant, low elevation weather stations and/or gridded

data sets to estimate conditions and recent climate variabil-

ity within the Andean range. It is interesting to note, how-

ever, that the amount of hydroclimatic information (in partic-

ular from solid and liquid precipitation, and hydrologic vari-

ables) is comparatively better for those portions of the south-

ern Andes that support large populated centers and where

the water provided by the mountains is vital for human con-

sumption, agriculture, industries and/or hydropower gener-

ation. In these areas, mainly between ca. 29 and 42◦ S, lo-

cal and national water resource agencies have monitored a

well-maintained network of hydrologic and meteorological

stations for several decades (see e.g., Masiokas et al., 2006,

2010). The data from the stations in this region are slowly

becoming publicly available and are substantially better in

terms of quantity and quality than those for the less popu-

lated, more inaccessible areas in southern Patagonia or in the

Desert Andes of northern Chile and Argentina.

The Central Andes of Chile and Argentina between

∼ 31 and 35◦ S (see Lliboutry, 1998) have a mean elevation

of about 3500 m, with several peaks reaching over 6000 m

(Fig. 1a). The climate of this region is characterized by a

Mediterranean regime with a marked precipitation peak dur-

ing the cold months (April to October) and little precipita-

tion during the warm summer season (November to March;

Fig. 1d). Almost all of the moisture comes from westerly Pa-

cific frontal systems, precipitating as rainfall in the Chilean

lowlands and as snow in the Andes to the east (Miller, 1976;

Aceituno, 1988; Garreaud, 2009). The snow accumulated in

Figure 2. Comparison between the annual mass-balance series of

ECH and regional records of maximum winter snow accumulation

and mean annual river discharges in the Andes between 30 and

37◦ S (see Fig. 1). The regional records are expressed as percent-

ages with respect to the 1981–2010 mean values. Variations in an-

nual total precipitation at Santiago are also included to highlight the

strong common hydroclimatic signal in this region.

the mountains during winter remains frozen until the onset

of the melt season (usually October–November), producing a

unimodal snowmelt-dominated regime for all rivers originat-

ing on either side of the Andes at these latitudes (Masiokas et

al., 2006; Cara et al., 2016). This relatively simple configura-

tion entails some potential benefits for the study and under-

standing of the hydroclimatic and glaciological processes in

this region: first, the strong covariability between total rain-

fall amounts measured in central Chile and winter snow ac-

cumulation and river discharges recorded in the Andes (see

Fig. 2) allows for the use of a relatively limited number of sta-

tion records to capture the main regional hydroclimatic pat-

terns. The strong common signal among these variables also

offers the possibility of inferring or reconstructing selected

instrumental data (e.g., winter snow accumulation, which

begins in 1951) using data from other well-correlated vari-

ables with a longer temporal coverage (e.g., Andean stream-

flow records which are available since 1909). Masiokas et

al. (2012) used these relationships to extend Andean snow-

pack variations using central Chilean rainfall records and

precipitation-sensitive tree-ring width series.

In contrast to the well-known similarities between precipi-

tation (solid and liquid) and surface runoff, the spatial and

temporal patterns of high-elevation temperature records in

the Central Andes of Chile and Argentina are still poorly un-

derstood. Falvey and Garreaud (2009) presented a detailed

assessment of temperature trends over the 1979–2006 pe-

riod along the western margin of subtropical South Amer-

ica, reporting a notable contrast between surface cooling

(−0.2 ◦C decade−1) in coastal stations and a warming trend

of ca. +0.25 ◦C decade−1 in the Andes only 100–200 km in-

land. However, only two land stations were available with

long enough records above 2000 m (i.e., El Yeso and Lagu-

nitas stations in Chile at 2475 and 2765 m, respectively), but

radiosonde data from the coastal station Quintero (ca. 33◦ S)

showed comparable positive trends for the free troposphere
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(Falvey and Garreaud, 2009). This lack of high-elevation

surface-temperature data also restricted the recent assess-

ments of Vuille et al. (2015), who focused their elevation-

dependent temperature trend analyses on the region north of

18◦ S because data were too sparse farther south.

The station El Yeso (33◦40′36′′ S, 70◦05′19′′W) is lo-

cated only 10 km south of ECH (Fig. 1b). Mean daily and

monthly temperature and total precipitation measurements

from this station have been available since 1962 but con-

tain several months with missing data prior to 1977 (tem-

perature) and 1975 (precipitation). Since 1977, both series

are practically complete and updated on a regular basis. To

our knowledge, in the entire extratropical Andes there is no

other operational meteorological station with such a long and

complete record of temperature and precipitation variations

less than a few kilometers from a glacier, which moreover

contains the longest ongoing mass-balance monitoring pro-

gram in the Southern Hemisphere. This rare combination of

relatively long, complete climate records near a well-studied

glacier site clearly highlights the importance of this unique

location for varied glaciological and climatological investi-

gations in the southern Andes.

In this contribution we use seasonal mass-balance records

from ECH plus locally and regionally averaged monthly hy-

droclimatic data to model and reconstruct annual glacier

mass-balance changes over the past 105 years. Since only the

glacier-wide seasonal and annual mass-balance components

are available for ECH, one of the main objectives of the study

was to explore the suitability of simple mass-balance models

that require a minimum amount of input data (Marzeion et

al. (2012); see also Kaser et al., 2010). Although this simplis-

tic approach provides limited insight into the intricate phys-

ical processes involved in this glacier’s intra-annual mass-

balance variations, it may, nonetheless, offer a useful starting

point to address some basic (yet still poorly known) ques-

tions regarding the glacier’s sensitivity to climate variations.

We did not consider a data-intensive approach to measure

and model the complex daily energy and mass-balance vari-

ations of this glacier (e.g., Pellicciotti et al., 2014), because

of the lack of the high-resolution, in situ meteorological and

glaciological measurements usually required in these types

of analyses. Another primary objective was to use the avail-

able, well-correlated hydrological records from this region

(Fig. 2) to extend the ECH annual mass-balance record and

evaluate the fluctuations of mass balance over a much longer

period than that covered by regular glaciological measure-

ments. Comparisons with other shorter mass-balance series

and with a record of glacier advances in this region sug-

gest the resulting time series contains a discernible regional

footprint. Overall, we believe the findings discussed below

constitute a substantial improvement in the understanding of

the main patterns and forcings of the glacier mass-balance

changes in this region and provide a useful background for

more detailed glacio-climatic assessments and modeling ex-

ercises in this portion of the Andes.

2 Data and methods

2.1 Glacier mass-balance data

The Echaurren Norte glacier (33◦33′ S, 70◦08′W) is located

within a southwestern-oriented cirque ∼ 50 km southeast of

Santiago de Chile, in the headwaters of the Maipo River

basin (Fig. 1a–c). ECH provides water to Laguna Negra, a

natural lake that together with the nearby El Yeso artificial

lake constitute crucial water reservoirs for extensive irrigated

lands and for the metropolitan Santiago area in central Chile.

Mass-balance measurements started at this easily accessi-

ble glacier in the austral spring of 1975 under the auspices of

Dirección General de Aguas (DGA), the institution in charge

of monitoring and managing water resources in Chile. Sum-

mer and winter mass-balance data at ECH have been regu-

larly measured until the present by DGA officials and have

been reported in sporadic internal documents and scientific

publications (Peña and Narbona, 1978; Peña et al., 1984; Es-

cobar et al., 1995a, b, 1997; DGA, 2010). These records have

also been reported to the WGMS, from which we obtained

the 1975–2012 data used in this manuscript (annual mass-

balance data extend to 2013; see WGMS (2013) and http:

//www.wgms.ch). The glacier has thinned in the last decades

and presently consists of small remnants of both clean and

debris-covered ice (Fig. 1c). Despite this evident ice-mass

loss, the elevation range of the glacier has not changed much

since measurements started in the mid-1970s. According to

Peña and Narbona (1978) and Escobar et al. (1995a, b), in the

first years of the mass-balance program the glacier covered

an area of 0.4 km2 distributed over a short elevation range

between ca. 3650 and 3880 m a.s.l. (Fig. 1c). Over the time

period covered by the mass-balance records, no adjustment

has been made to incorporate the changes in surface area of

the glacier, thus the reported values are considered here as

reference-surface mass-balance estimates (i.e., the mass bal-

ance that would have been observed if the glacier topogra-

phy had not changed over the study period; see Cogley et al.,

2011).

Mass-balance data from PIL from 1979 to 2002 and

shorter time series from small glaciers and glacierets fur-

ther north in this region are also available from the

WGMS database (Leiva et al. (2007), Rabatel et al. (2011),

WGMS (2013); see Fig. 1a and Table 1). Here we compare

the cumulative annual mass-balance records of these glaciers

as independent validation measures of the main patterns and

temporal trends observed in the measured and modeled mass-

balance series from ECH.

2.2 Minimal glacier mass-balance model

A minimal model only requiring monthly temperature and

precipitation data (Marzeion et al., 2012) was used to es-

timate the interannual surface mass-balance variations of

ECH and to explore the relative importance of temperature

The Cryosphere, 10, 927–940, 2016 www.the-cryosphere.net/10/927/2016/
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Table 1. Basic information of the glacier mass-balance series used in this study.

Name ID in Lat., long. Area in Period Ctry∗ References

Fig. 1 km2

(year)

Echaurren ECH 33◦33′ S, 0.226 1975–2013 CL DGA (2009), Barcaza (DGA),

Norte 70◦08′W (2008) WGMS (2013)

Piloto Este PIL 32◦13′ S, 0.504 1979–2002 AR Leiva et al. (2007), WGMS (2013)

70◦03′W (2007)

Conconta COL 29◦58′ S, 0.089 2008–2013 AR Cabrera and Leiva (IANIGLA),

Norte 69◦39′W (2012) WGMS (2013)

Brown COL 29◦59′ S, 0.191 2008–2013 AR Cabrera and Leiva (IANIGLA),

Superior 69◦38′W (2012) WGMS (2013)

Los COL 29◦18′ S, 0.954 2008–2013 AR Cabrera and Leiva (IANIGLA),

Amarillos 69◦59′W (2012) WGMS (2013)

Amarillo PAS 29◦18′ S, 0.243 2008–2013 CL Cabrera and Leiva (IANIGLA),

70◦00′W (2012) WGMS (2013)

Toro 1 PAS 29◦20′ S, 0.071 2004–2009 CL Rabatel et al. (2011), WGMS (2013)

70◦01′W (2007)

Toro 2 PAS 29◦20′ S, 0.066 2004–2009 CL Rabatel et al. (2011), WGMS (2013)

70◦01′W (2007)

Esperanza PAS 29◦20′ S, 0.041 2004–2009 CL Rabatel et al. (2011), WGMS (2013)

70◦02′W (2007)

Guanaco PAS 29◦19′ S, 1.836 2004–2013 CL/ Rabatel et al. (2011), Rivera (CECs),

70◦00′W (2007) AR WGMS (2013)

∗ country: CL: Chile; AR: Argentina.

and precipitation variability for the ECH records. In their

publication, Marzeion et al. (2012) used gridded precipita-

tion and temperature data to calibrate individual models for

15 glaciers with existing mass-balance measurements in the

greater Alpine region. The climate data used here come from

El Yeso, a permanent automatic weather station maintained

by DGA and located ca. 10 km to the south and 1200 m

lower than ECH’s snout (Fig. 1b). The data are freely avail-

able at the DGA website (http://www.dga.cl) and contain

practically complete monthly temperature and precipitation

records since 1977 (only four missing months were filled us-

ing their long-term means). The mass-balance model can be

defined as follows:

MB=

12∑
i=1

(αPi −µ(max(0,Ti − Tmelt))) , (1)

where MB represents the modeled annual specific mass bal-

ance of the glacier, Pi are monthly total precipitation val-

ues at the El Yeso station and α is a scaling parameter intro-

duced to compensate for the precipitation gradient between

the elevation of this station (rounded here to 2500 m) and

the front of ECH (fixed at 3700 m in this analysis). We do

not differentiate solid vs. liquid precipitation, because at this

glacier (and in other high-elevation areas in this portion of

the Andes) the bulk of precipitation occurs during the winter

months and the fraction of liquid precipitation is usually min-

imal compared to the large proportion that falls as snow (see

Fig. 1d). The use of total precipitation values also avoids the

additional complexity and uncertainties involved in differen-

tiating solid from liquid precipitation at this glacier, which

is distributed over a very small altitudinal range (see also

Fig. 1c). Ti represents mean monthly temperatures at El Yeso

extrapolated to the elevation of the glacier front using a con-

stant lapse rate of −0.065 ◦C/100 m and Tmelt is the monthly

mean temperature above which melt occurs. As indicated

in Marzeion et al. (2012), the maximum operator ensures

that melting occurs only during months with mean temper-

atures above Tmelt. The parameter µ is expressed in mm K−1

and was introduced to translate the monthly temperature

records into monthly ablation values at the glacier. In or-

der to estimate the parameters α and µ and validate the final

model, we performed a leave-one-out cross-validation pro-

cedure (Michaelsen, 1987). In this approach, ECH data for

each year between 1977 and 2012 (common period between

the El Yeso data and the ECH mass-balance series) were

successively excluded and the minimal mass-balance model

www.the-cryosphere.net/10/927/2016/ The Cryosphere, 10, 927–940, 2016
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(Eq. 1) was calibrated with the remaining values. At each

step the parameters α and µ were first optimized to minimize

the root mean squared error (RMSE; Weisberg, 1985) of the

modeled values and then used to estimate the mass-balance

data omitted that year. This resulted in 36 predicted values

which were compared to the actual annual mass-balance ob-

servations to compute validation statistics of model accu-

racy and error. The exercise showed that the model param-

eters are relatively time stable: α ranged between 3.9 and 4.1

(mean value used here= 3.9), whereas µ varied between

89.0 and 91.0 mm K−1 (mean value used= 90.1 mm K−1).

The mean estimated value of α indicates that accumulation

at the glacier is normally about four times larger than the an-

nual precipitation recorded at El Yeso. The mean estimated

value for µ is also reasonable and within the range of values

reported by Marzeion et al. (2012) for the 15 glaciers with

direct measurements in the European Alps (76–156 mm K−1,

see their Table 1). Finally, for the sake of simplicity, we pre-

scribed Tmelt= 0 ◦C as suggested in Marzeion et al. (2012).

2.3 Glacier mass-balance reconstruction

In addition to modeling the interannual mass-balance vari-

ations of ECH using the temperature and precipitation data

from El Yeso, we also used regionally representative hy-

droclimatic indicators to extend the observed glacier mass-

balance record prior to 1975. The use of these indicators (re-

gionally averaged series of winter snow accumulation and

mean annual river discharges; see Masiokas et al., 2006) was

supported by visual comparisons and correlation analyses

which showed strong, statistically significant positive associ-

ations not only with the winter record at ECH, but also with

the annual mass-balance series of this glacier (Table 2 and

Fig. 2). The correlation was also positive but weaker between

the summer component at ECH and the regional snowpack

and streamflow series.

The regionally averaged record of winter snow accumula-

tion is based on eight selected stations located in the Chilean

and Argentinean Andes between 30 and 37◦ S (Fig. 1a and

Table 3). The data set has been updated from the one used

by Masiokas et al. (2012) and contains the longest and most

complete snowpack records in this region. Prior to comput-

ing the regional average, the individual series were expressed

as percentages from their 1981 to 2010 climatology mean

values. A similar approach was used to develop a regional

record of mean annual (July–June) streamflow variations.

This series was calculated using monthly data from 11 gaug-

ing stations with the longest and most complete records in

this portion of the Andes (Fig. 1a and Table 3). The result-

ing snowpack and streamflow composite records cover the

1951–2014 and 1909–2013 periods, respectively (Fig. 2).

The glacier mass-balance reconstructions are based on

simple linear regression models where the predictand is the

1975–2013 ECH annual mass-balance series and the predic-

tors are, alternatively, the regional 1951–2014 snowpack and

1909–2013 streamflow records depicted in Fig. 2. Given the

relative shortness of the common period between the pre-

dictor and predictand series (39 years), the reconstruction

models were also developed using a leave-one-out cross-

validation procedure (Michaelsen, 1987). Here, linear re-

gression models for each year were successively calibrated

on the remaining 38 observations and then used to estimate

the predictand’s value for the year omitted at each step. A

simple linear regression model based on the full calibra-

tion data set (1975–2013) was finally used to reconstruct

the mass-balance values over the complete period covered

by the regional time series. The goodness of fit between ob-

served and predicted mass-balance values was tested based

on the proportion of variance explained by the regression

models and the normality, linear trend, and first- and higher-

order autocorrelation of the regression residuals. The uncer-

tainties in each reconstructed mass-balance value in year t

(εreco(t)) were calculated integrating the standard error of

the regression estimate (SEregr) and the standard error of

the mean annual streamflow values used as predictors in the

model (SEmean(t)). This latter error is derived from the stan-

dard deviation of the regional record (σ ) and increases as the

number of contributing streamflow series (n) decreases back

in time (see Table 3).

εreco(t) =

√
SE2

regr+SE2
mean(t) (2)

SEmean(t) =
σ
√
n(t)

(3)

An independent verification of the reconstructed mass-

balance records was undertaken by comparing the cumula-

tive patterns of these series with the cumulative mass bal-

ances reported for the Piloto Este glacier and for other

glaciers with shorter mass-balance series available in this

portion of the Andes (Fig. 1a and Table 1). We also com-

pared the ECH cumulative series (observed and predicted)

with a regional record of glacier advances identified during

the 20th century in the Andes between 29 and 35◦ S. The

latter record was compiled in a recent review of glacier fluc-

tuations in extratropical South America and is based on di-

rect observations, reports from documentary evidence, and

analyses of aerial photographs and satellite images from this

region (see Masiokas et al., 2009). The uncertainty of the cu-

mulative series modeled for ECH (ε(T )) were calculated by

propagating (adding) the individual errors estimated for each

reconstructed value.

ε(T ) =

√√√√t=T∑
t=1

ε2
reco(t) (4)

The Cryosphere, 10, 927–940, 2016 www.the-cryosphere.net/10/927/2016/
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Table 2. Correlation analyses between the ECH mass-balance series and regional hydroclimatic records. The number of observations used

in each correlation test is indicated in parenthesis.

Winter ECH Annual mass Regional Regional

balance ECH snowpack streamflow

Summer ECH 0.245 (38) 0.648∗∗ (38) 0.447∗∗ (38) 0.395∗ (38)

Winter ECH 0.897∗∗ (38) 0.796∗∗ (38) 0.834∗∗ (38)

Annual mass-balance ECH 0.829∗∗ (39) 0.826∗∗ (39)

Regional snowpack 0.916∗∗ (63)

Note: ∗ (∗∗) Pearson correlation coefficient is significant at the 95 % (99 %) confidence level.

Table 3. Stations used to develop regionally averaged series of mean annual river discharges and winter-maximum snow accumulation for

the Andes between 30 and 37◦ S. Mean annual streamflow values refer to a July–June water year.

Variable Station Lat., long. Elev. Period 1981–2010 Data

mean∗ source

A – Snowpack Quebrada Larga 30◦43′ S, 70◦22′W 3500 m 1956–2014 273 DGA

Portillo 32◦50′ S, 70◦07′W 3000 m 1951–2014 703 DGA

Toscas 33◦10′ S, 69◦53′W 3000 m 1951–2014 354 DGI

Laguna Negra 33◦40′ S, 70◦08′W 2768 m 1965–2014 632 DGA

Laguna del Diamante 34◦15′ S, 69◦42′W 3310 m 1956–2014 472 DGI

Valle Hermoso 35◦09′ S, 70◦12′W 2275 m 1952–2014 756 DGI

Lo Aguirre 36◦00′ S, 70◦34′W 2000 m 1954–2014 934 DGA

Volcán Chillán 36◦50′ S, 71◦25′W 2400 m 1966–2014 757 DGA

B – Streamflow Km. 47.3 (San Juan) 31◦32′ S, 68◦53′W 945 m 1909–2007 68.2 SSRH

(river) Guido (Mendoza) 32◦51′ S, 69◦16′W 1550 m 1909–2013 52.4 SSRH

Valle de Uco (Tunuyán) 33◦47′ S, 69◦15′W 1200 m 1954–2013 30.6 SSRH

La Jaula (Diamante) 34◦40′ S, 69◦19′W 1500 m 1938–2013 35.6 SSRH

La Angostura (Atuel) 35◦06′ S, 68◦52′W 1200 m 1948–2013 39.1 SSRH

Buta Ranquil (Colorado) 37◦05′ S, 69◦44′W 850 m 1940–2013 154.8 SSRH

Cuncumén (Choapa) 31◦58′ S, 70◦35′W 955 m 1941–2013 10.3 DGA

Chacabuquito (Aconcagua) 32◦51′ S, 70◦31′W 1030 m 1914–2013 34.7 DGA

El Manzano (Maipo) 33◦36′ S, 70◦23′W 890 m 1947–2013 123.0 DGA

Termas de Cauquenes (Cachapoal) 34◦15′ S, 70◦34′W 700 m 1941–2001 93.6 DGA

Bajo Los Briones (Tinguiririca) 34◦43′ S, 70◦49′W 518 m 1942–2013 53.8 DGA

Note: ∗ The 1981–2010 climatology values for each station are expressed as mm w. eq. for snowpack and as m3 s−1 for streamflow. In the case of the San Juan and

Cachapoal rivers, the mean values used correspond to the 1981–2007 and 1981–2001 periods, respectively. Data sources: (DGA) Dirección General de Aguas, Chile;

(DGI) Departamento General de Irrigación, Mendoza, Argentina; (SSRH) Subsecretaría de Recursos Hídricos, Argentina. See Masiokas et al. (2013) for further details.

3 Results

3.1 Minimal glacier mass-balance model

The 1975–2012 winter and summer values observed

at ECH are depicted in Fig. 3a. The winter series

shows a long-term mean of 2.54 m w.eq. and a larger

range of variability (SD 1.24 m w.eq.) than the sum-

mer series, which fluctuates around a long-term mean of

−2.93 m w.eq. (SD 0.72 m w.eq.). The observed and mod-

eled annual mass-balance series are remarkably similar

(Fig. 3b) and show a strong positive correlation (r = 0.883,

rmse= 0.77 m w.eq.), indicating that 78 % of the variance

in the ECH record can be accounted for by the mini-

mal model presented in Eq. (1). Both series show sim-

ilar, slightly negative linear trends and negative means

(−0.35 and −0.34 m w.eq. for the observed and modeled se-

ries, respectively) over the 1977–2012 interval.

3.2 Attribution assessments

In order to test which climate variable (temperature or precip-

itation) has a stronger influence on the annual mass-balance

variations at ECH, the glacier mass-balance model was also

run alternatively replacing the temperature and the precipi-

tation monthly data by their long-term average values. The

results from this analysis (Fig. 3c) suggest that precipitation

variations constitute the dominant forcing modulating annual

glacier mass balance at this site. Regardless of their differ-

ent absolute values, the precipitation-driven estimates (blue
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Figure 3. Panel (a) shows winter and summer values observed at

ECH between 1975 and 2012. Panel (b) shows annual mass-balance

series observed at ECH and modeled using El Yeso climate data (red

and black lines). The estimated uncertainties of the modeled val-

ues (±2 RMSE) are shown with gray shading. In panel (c) Annual

mass balances observed at ECH (red line) are compared to mass bal-

ances modeled using full variability in temperature but climatologi-

cal monthly precipitation (dark-red dashed line), and full variability

in precipitation but climatological monthly temperatures (dark-blue

dashed line). Note the greater similarities between the observed se-

ries and the precipitation-based mass-balance estimates.

dashed line in Fig. 3c) show a strong positive correlation

(r = 0.882) and remarkable similarities with the ECH annual

mass-balance series (red line). In contrast, the temperature-

driven estimates (dark-red dashed line) show a poorer cor-

relation with the ECH record (r = 0.240) and a substantially

lower inter-annual variability, which only barely follows the

variations in the annual mass-balance series. To evaluate if

the influence of temperature had been underestimated in the

full model (where the parameters α and µ can compensate

for each other), both parameters were also optimized individ-

ually using a leave-one-out approach and considering each

term of Eq. (1) as separate models. In this case the param-

eters showed almost exactly the same mean values (3.8 for

Figure 4. Panel (a) shows a comparison between the annual mass-

balance record observed at ECH (red line) and the reconstructed

series derived from regionally averaged streamflow data (blue line).

The estimated uncertainty of the reconstructed series (±2 εreco) is

indicated by gray shading. Panel (b) shows the cumulative record

of the observed and reconstructed ECH mass-balance series (dark-

red and dark-blue lines). The initial value of the observed ECH cu-

mulative record was modified to match the corresponding value in

the reconstructed series. The aggregated errors in this series (see

Sect. 2.3) are also shown by gray shading. Panel (c) depicts glacier

advances identified in the central Andes of Chile and Argentina dur-

ing the past 100 years (see text for details). Events are grouped into

10-year intervals.

α and 90.3 mm K−1 for µ) as those obtained using the full

model (3.9 and 90.1 mm K−1 for α and µ, see Sect. 2.2),

suggesting that the poor performance of temperature is not

due to the interaction of the parameters in the mass-balance

model.

3.3 Annual mass-balance reconstruction 1909–2013

Figure 4a shows the reconstruction of the ECH annual mass-

balance series based on the regional record of mean an-

nual streamflows. The snowpack-based mass-balance recon-

struction is not shown as it is significantly shorter than

the streamflow-based series and shows virtually the same

variations over their overlapping interval. The streamflow-

based regression model (Table 4) is able to explain 68 %
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Table 4. Summary statistics for the simple linear regression models used to estimate ECH annual mass balances using regional snowpack

and streamflow records.

Predictor Model statistics Residual statistics

Adj r2 F SE RMSE b0 (std. error) b1 (std. error) Slope DWd Port. Q

Snowpack 0.686 80.99∗ 0.889 0.911 −2.899 (0.316)∗ 0.026 (0.003)∗ −0.003 ns 2.2 ns 5.7 ns

Streamflow 0.682 79.49∗ 0.894 0.919 −4.045 (0.439)∗ 0.038 (0.004)∗ 0.006 ns 2.3 ns 4.9 ns

Notes: adj r2
= adjusted coefficient of determination used to estimate the proportion of variance explained by regression; F =F ratio for ANOVA test of the null

hypothesis that all model coefficients are 0; SE= standard error of the estimate; RMSE= root mean squared error of regression. b0 = constant of regression model;

b1 = regression coefficient; DWd=Durbin–Watson d statistic used to test for first-order autocorrelation of the regression residuals; Port. Q=Portmanteau Q statistic

to test if high-order autocorrelation in the regression residuals is different from 0; ns= results are not statistically significant at the 95 % confidence level;
∗
= statistically significant at the 99 % confidence level.

of the variance in the annual mass-balance series over the

1975–2013 period and shows no apparent sign of model

misspecification, offering the possibility of reliably extend-

ing the information on glacier mass-balance changes back

to 1909. This reconstructed mass-balance record is almost

three times longer than the mass-balance record currently

available at ECH and shows a strong year-to-year variability

embedded within several periods of overall positive or nega-

tive conditions (Fig. 4a). In particular, positive mass-balance

conditions were reconstructed between 1914 and 1941, in

the 1980s and in the late 1990s to the early 21st century. In

contrast, the clearest sustained period of negative mass bal-

ances occurred between the 1940s and the 1970s.

The cumulative values of the streamflow-based mass-

balance reconstruction show very good correspondence with

the observed cumulative series and an overall negative trend

between 1909 and 2013 (Fig. 4b). Within this century-

long negative trend, a prominent period of extended positive

mass balances can be observed between the mid-1910s and

the early 1940s. After 1941 and during the following four

decades, the cumulative mass-balance series shows an im-

pressive decline that is interrupted in 1980 by a ∼ 10-year

long period of sustained positive conditions (Fig. 4b). Since

the early 1990s and until 2013 the cumulative mass-balance

series resumes the negative tendency, only interrupted by a

short-lived period of positive conditions in the first years of

the 21st century. It is important to note, however, that as-

cribing absolute values to this reconstructed cumulative se-

ries is complicated and should be used with caution due to

the large uncertainties involved and the fact that the model

is calibrated using reference-surface mass-balance estimates

(Cogley at al., 2011). Between 1975 and 2013 the lower el-

evation of the glacier did not change much (see Fig. 1c) and

therefore the reference-surface and the conventional mass-

balance estimates are probably roughly equivalent. However,

for earlier decades and without historical information on the

glacier area and frontal position, it is difficult to estimate the

impacts of changing glacier geometry on the actual mass bal-

ance of this glacier.

Figure 5. Comparison between the cumulative patterns in the ob-

served and reconstructed records from ECH and other glaciers with

available direct mass-balance data in the Dry Andes of Chile and

Argentina (Fig. 1 and Table 1).

3.4 Comparison with other glacier records

Examination of the main patterns in the reconstructed cumu-

lative mass-balance series shows a good correspondence with

a regional record of glacier advances identified in the Cen-

tral Andes over the past 100 years (Masiokas et al., 2009;

Fig. 4c). In most cases, the glacier advances are concentrated

during or soon after the periods of sustained positive mass

balances reconstructed or observed at ECH. This situation

is particularly clear in the 1980s and 1990s, where a large

number of glacier advances were identified during and/or im-

mediately after the peak in mass balances that culminated

in 1989 (Fig. 4b and c). Glacier advances were also identi-

fied in the 1930s, 1940s and 1950s, likely associated with the

extended period of positive mass balances that culminated in

the early 1940s. A few well-documented advances identified

in this region between 2003 and 2007 may be associated with

the minor peak in cumulated mass balances observed at the

turn of the 21st century (Fig. 4b and c).

The cumulative variations in the modeled and observed

mass-balance series from ECH are also very similar to those

observed in the 1979–2002 cumulative record of PIL, pro-

viding additional support for the overall reliability of the re-
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Figure 6. Panel (a) depicts a map showing the correlations (p< 0.1) between mean warm season (October–March) temperatures at the

El Yeso station and gridded warm season ERA-Interim mean temperatures for the 700 mb geopotential height level over the 1979–2012

period. The black star marks the location of the El Yeso station. The diagram in (b) shows variations of mean monthly temperatures at

El Yeso (1977–2013) and the mean monthly elevation of the 0 ◦C isotherm (ZIA) derived from radiosonde data from the Quintero coastal

station (1975–2004). To facilitate the comparison, both series are expressed as anomalies from their mean seasonal cycles. Panel (c) shows a

scatterplot of the El Yeso temperature and ZIA anomalies depicted in (b). Note the positive, highly significant correlation between these two

variables. ZIA data were provided by J. Carrasco from Dirección Meteorológica de Chile.

constructed time series (Fig. 5). The cumulative tendency of

PIL appears to be smoother than the ECH series, but still

shows slightly positive or near-equilibrium conditions be-

tween the late 1970s and the mid-1980s followed by a sharp

decline until the turn of the 21st century. The cumulative se-

ries from other glaciers located further north in the Pascua

Lama and Cordillera de Colanguil areas (Fig. 1a and Table 1)

only cover the last decade or so of the ECH record. However,

in all cases their overall tendency is similar and markedly

negative, reflecting the sustained unfavorable conditions that

these ice masses have endured in recent years. It is interest-

ing to note that the smaller glaciers (Table 1 and Fig. 5) are

the ones consistently showing the steepest negative cumula-

tive trends whereas the largest glacier (Guanaco glacier, with

ca. 1.8 km2 in 2007) shows the least negative trend.

4 Discussion and conclusions

Compared to other mountainous glacierized areas, the extra-

tropical Andes in southern South America contain one of the

least complete networks of in situ glacier mass-balance and

high-elevation climate records in the world. This scarcity of

basic information in this extensive and glaciologically di-

verse region has been highlighted on many occasions and

several recent studies have attempted to overcome this lim-

itation by estimating mass-balance changes through remote

sensing and/or modeling approaches of varied complexity

and spatial coverage (e.g., Casassa et al., 2006; Radić et al.,

2013; Lenaerts et al., 2014; Pellicciotti et al., 2014; Schae-

fer et al., 2013, 2015). With such limited data availability,

the few existing glacier mass-balance records become partic-

ularly relevant as they provide crucial information and val-

idation measures for many glaciological, climatological and

hydrological analyses.

In this paper we analyzed an up-to-date compilation of the

longest and most complete in situ glacier mass-balance and

hydroclimatic records from the Andes between 29 and 37◦ S

to address some basic (yet poorly known) glaciological is-

sues in this region. First, we show that it is possible to esti-

mate annual glacier mass-balance changes using very simple

modeling approaches. Results from a minimal model requir-

ing only monthly temperature and precipitation data (Eq. 1)

revealed that up to 78 % of the variance in the ECH annual

mass-balance series between 1977 and 2012 could be cap-

tured simply using available records from the El Yeso sta-

tion, ca. 10 km from the glacier (Figs. 1a and 3b). Winter

precipitation variability appears to be the dominant forcing

modulating annual mass balances at ECH, with temperature

variations likely playing a secondary role (Fig. 3c). This is

particularly interesting because it contrasts with the findings

in other regions where the recent glacier behavior is generally

more strongly related to changes in temperature instead of

precipitation (e.g., Marzeion et al., 2012). However, although

Peña and Narbona (1978) also noted a dominant influence of

the winter accumulation term on the resulting annual mass

balance of this glacier, the results should be assessed with

caution given the simplistic nature of our model and the var-

ious factors that ultimately affect the annual mass balance at

this site. For example, more detailed assessments should also

consider the impact of sublimation on the mass balance of
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glaciers in this high-arid portion of the Andes (McDonell et

al., 2013; Pellicciotti et al., 2014).

To test the reliability of the temperature records used to

model the glacier mass-balance series, we correlated the El

Yeso monthly temperature record with ERA-Interim gridded

reanalysis temperatures for the 700 mb geopotential height

(roughly 3000 m a.s.l.) and also with a 0 ◦C isotherm ele-

vation series available from central Chile (Fig. 6). The El

Yeso temperature record shows strong positive correlations

with ERA-Interim gridded data over an extensive region that

includes central Argentina, central Chile and an adjacent

area in the Pacific Ocean (Fig. 6a). The El Yeso tempera-

ture record also shows clear similarities and a positive sig-

nificant correlation with the 0 ◦C isotherm elevation series

over the 1977–2004 interval (Fig. 6b and c). The indepen-

dence of these three data sets indicates that the El Yeso mean

monthly temperature data are reliable and that the poor per-

formance of this variable in the mass-balance modeling exer-

cise is not related to the overall quality of the temperature se-

ries. Although this issue is beyond the main purposes of this

study, more complex modeling approaches are also needed

to evaluate whether climate data at higher temporal resolu-

tion (instead of monthly values as used here) are capable of

capturing a larger percentage of the mass-balance variations

observed at ECH.

Annual mass-balance variations observed at ECH can also

be reproduced or estimated accurately through simple linear

regression using regionally averaged winter snowpack or an-

nual streamflow records as predictors (Fig. 4a). This is due

to the existence of a strong common hydroclimatic signal in

this region, which results in very similar interannual varia-

tions in winter snow accumulation, mean annual river dis-

charges and glacier mass-balance changes such as those mea-

sured at ECH (Fig. 2). This simple approach allows extend-

ing the information on glacier mass-balance changes sev-

eral decades prior to the beginning of in situ measurements

(back to 1909) and offers the opportunity of putting the exist-

ing glacier record in a longer-term perspective. Many of the

extreme values reconstructed in this study have been doc-

umented in historical reports and recent analyses of instru-

mental hydroclimatic data. For example, the extreme posi-

tive values of 1914 and 1919 coincide with extremely wet

winters in central Chile (see e.g., Fig. 2; Taulis, 1934; Ma-

siokas et al., 2012), whereas the period with above-average

balances centered in the 1980s or the negative conditions be-

tween the 1940s and 1970s have been identified, respectively,

as the snowiest and driest intervals during the instrumental

era in this region (Masiokas et al., 2010). Examination of the

main intra- to multi-decadal patterns in this extended series

also indicates that the sustained negative mass-balance con-

ditions reported for ECH in recent years are not unusual and

were probably surpassed by more negative and longer peri-

ods between the 1940s and 1970s (Fig. 4a). However, the im-

pact of a few consecutive years of negative mass balances are

more serious today than several decades ago because of the

low volume of ice remaining and the poorer overall “health”

of the glacier.

The cumulative series of the reconstructed mass-balance

values (Fig. 4b) shows a steep negative trend that is consis-

tent with the recent loss of ice reported for other glaciers

in this region (Fig. 5; Escobar et al., 1995a) Rivera et al.,

2000; Masiokas et al., 2009). This negative trend has been

temporarily interrupted by periods of sustained positive mass

balances that, in most cases, precede or coincide with recent

glacier readvances identified at these latitudes in the Andes

(Masiokas et al., 2009; Fig. 4c). The clearest example is the

relationship between the peak in cumulative mass balances

in the mid-to-late 1980s and the 11 documented glacier ad-

vances in the following decade. It is also interesting to note

that several of the glacier events that occurred after periods

of positive mass balances have been identified as surges (Hel-

bling, 1935; Espizua, 1986; Masiokas et al., 2009; Pitte et al.,

2016). The well-known surges of Grande del Nevado glacier

(in the Plomo massif area) in 1933–1934, 1984–1985 and

2004–2007 are particularly noteworthy as they consistently

occurred near the culmination of the three periods with over-

all positive mass balances in the 1920s, 1930s, 1980s and in

the first decade of the 21st century (Fig. 4b). In agreement

with the progressively smaller magnitude of these peaks in

the cumulative mass-balance series, the three Grande del

Nevado surges also showed a decreasing power and trans-

ferred progressively smaller quantities of mass from the up-

per to the lower parts of the glacier. Two recent surges of Hor-

cones Inferior glacier in the nearby Mt. Aconcagua area also

occurred in the mid-1980s and again between 2002 and 2006,

suggesting a possible connection between the development

of surging events and the periods with overall positive mass-

balance conditions in this region (Pitte et al., 2016).

The fact that only limited information is available for

ECH, together with the use of reference-surface mass-

balance estimates, (see Sect. 2.1) poses interesting yet com-

plicated questions regarding the applicability of this series

in related glaciological and/or climatological assessments.

Since reference-surface mass-balance variations are more

closely related to changes in climate than the conventional

mass balance of a glacier (Cogley et al., 2011), the recon-

structed series discussed here is arguably more relevant to

climate-change-related studies rather than hydrological stud-

ies. If the purpose is to evaluate the hydrological contribution

of this ice mass over the last century, then conventional mass-

balance estimates are necessarily required to take the chang-

ing glacier geometry into account. In any case, and consider-

ing the relevance of the observed ECH series for regional,

hemispheric and global mass-balance studies, a reanalysis

(Zemp et al., 2013) of the entire mass-balance record would

probably produce important worthwhile information to as-

sess the hydrological impact of the recent ice-mass losses in

this semi-arid region (e.g., Ragettli et al., 2014). This issue

is particularly relevant due to the extended droughts experi-

enced in recent years and the increasing socioeconomic con-
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flicts over the limited water resources (almost entirely origi-

nating in the mountains) arising on both sides of the Andes.

Keeping these caveats in mind, the common pattern of

strongly negative mass balances, the similarities with the

few available glacier chronologies and the regional nature of

the predictors used in the ECH reconstruction suggest that

this series may nonetheless be considered representative (in

relative terms) of the mass-balance changes during recent

decades in other less-studied areas in this region. Reliable

data from a larger number of glaciers, together with addi-

tional studies of the glacier–climate relationships are, how-

ever, still needed to support this hypothesis and to identify,

for example, the main climatic forcings behind the recent

glacier shrinkage observed in the Central Andes of Chile and

Argentina (Masiokas et al., 2009). This is a challenging issue

due to several factors, including the serious lack of glacier

mass-balance series and high-elevation climate records, the

complex dynamic response of individual glaciers to similar

changes in climate and the great variety of glaciers existing

in this region (Pellicciotti et al., 2014). The results discussed

in this study offer a useful starting point to address the vari-

ous pending issues mentioned above and will hopefully stim-

ulate further glaciological, climatological and hydrological

research in this poorly known mountainous region.
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