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Adata-consistentmodel of the last glaciation
in the Alps achieved with physics-driven AI

Tancrède P. M. Leger 1,2,6 , Guillaume Jouvet 1,6, Sarah Kamleitner 1,3,
Jürgen Mey 4, Frédéric Herman 1, Brandon D. Finley 1, Susan Ivy-Ochs5,
Andreas Vieli 3, Andreas Henz 3 & Samuel U. Nussbaumer 3

25 thousand years ago, the European Alps were covered by the kilometre-thick
Alpine Ice Field. Numericalmodelling of this glaciation has been challenged by
model-data disagreements, including overestimations of ice thickness. We
tackle this issue by applying the Instructed Glacier Model, a three-dimensional
model enhanced with physics-informed machine learning. This approach
allows us to produce 100 Alps-wide and 17 thousand-year-long simulations at
300m resolution. Previously unfeasible due to computational costs, our
experiment both increases model-data agreement in ice extent and reduces
the offset in ice thickness by between 200% and 450% relative to previous
studies. Our results have implications for better estimating former ice velo-
cities, ice temperature, basal conditions, erosion processes, and paleoclimate
in the Alps. This study demonstrates that physics-informed machine learning
can help overcome the bottleneck of high-resolution glacier modelling and
better test parameterisations, both of which are required to accurately
describe complex topographies and ice dynamics.

The extent, thickness, and flow geometry of the European Alpine Ice
Field (AIF) during Quaternary glaciations has been studied for more
than a century1–4. The result is an abundant library of mapped and
dated ice-contact glaciogenic landforms and sediments (e.g. moraines
and tills)5–8, glaciofluvial deposits9, and trimlines10–16,making the extent
of the AIF during the Last GlacialMaximum (LGM: ~30–19 ka17,18) one of
the most well known in the world11,18. Yet, numerous controversies
remain regarding the spatio-temporal evolution of the AIF’s former
thickness, velocity patterns, basal conditions, outlet glacier asyn-
chronies, erosion potential, and isostatic adjustment. Obtainingmodel
simulations of the LGM ice field that match empirical data has impli-
cations for understanding such mechanisms and can also improve
reconstructions of late-Quaternary human and ecological history19.

Under these motivations, over the past 20 years, several
studies20–24 have produced simulations of AIF glaciations using glacier
evolutionmodels such as the Parallel Ice Sheet Model (PISM25) and the

integrated second-order shallow ice approximation model (iSOSIA26),
with themain objective to closely fitmoraine and trimline evidence. As
a result, model-data misfits in LGM ice extent were incrementally
reduced, with the latest study22 making progress by using an improved
climate forcing27. However, a major discrepancy has persisted when
comparing model results with trimlines assumed to indicate past
maximum ice surface elevations10–16. Numerical models have tradi-
tionally overestimated the AIF’s thickness by between 400–1000
metres during the local LGM20,22, thus misrepresenting the supposedly
thin and topographically constrained nature of the ice field11,18. This ice
thickness overestimationhas been attributed tooversimplified iceflow
dynamics and the coarse spatial resolutions of previous AIF-wide
models, computationally restricted to 1–2 km22. However, the dis-
crepancy also caused some studies20,28,29 to question whether trimlines
in the Alps are true indicators of maximum ice surface elevations, or
rather of warm-to-cold-based ice transitions, as was previously
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debated in other glaciated regions, such as Britain and Scandinavia for
instance30.

To address this conundrum, we apply a different approach by
modelling the AIF with the Instructed Glacier Model (IGM)31,32, a
thermo-mechanically coupled three-dimensional glacier evolution
model. IGM makes use of recent improvements in physics-informed
machine learning to accelerate the high-order Blatter-Pattyn solver of
ice flow33, enabling efficient computation on graphics processing units
(GPU). The resultingmodel simulates glaciermotionwith fidelity while
offering the same ability to perturbate parameters controlling ice
properties as traditional central-processing-unit-based models, but at
a fraction of the computational cost. Here, we use IGM to simulate the
AIF’s transient evolution from 35 to 18 ka, thus bracketing the full LGM
period, at a spatial resolution of 300m, an order of magnitude higher
than previously achieved20. Computationally unfeasible with tradi-
tional glacier models, our perturbed parameter ensemble experiment
shows that increasing spatial resolution substantially reduces model-
data misfits in both LGM ice extent and thickness across the Alps
(Fig. 1), resulting in a thinner ice field than previous 1–2 km resolution
models20,22. This approach enables us to produce a high-resolution,
data-consistent, yet physics-based transient simulation of the AIF’s last
glaciation. The results have wider implications for addressing open
research questions on Quaternary glacial erosion processes, post-
glacial isostatic rebound, and paleoclimate in the European Alps. Our
study also reveals that GPU-based glacier evolution modelling is a
promising tool for better reconstructing other paleo icefields, but also
for past and future ice-sheet-scale modelling. Indeed, by substantially
reducing computational costs, this approach permits advances in
modelling resolution and parameter space exploration, both essential
to resolve complex topographies and model more accurate past and
future glaciated environments.

Results
High resolution model setup
Tomodel the transient evolution of the AIF during the LGM, we design
a high-resolution (300m) model setup with IGM31,32 that builds on the
Parallel Ice Sheet Model (PISM25) experimental setup of Jouvet et al.22.
We implement an equivalent enthalpy module formulated by Asch-
wanden et al.34 for modelling polythermal ice (see ‘Methods’ section)
and use the same input climate fields27 and geothermal heatflux data35.
Surfacemass balance is computedusing a comparable positive degree-
day scheme based on Calov & Greve36. We use a pseudo-plastic power
slip law37 and parameterize the space-dependent yield stress to be
controlled by the effective pressure and frictional strength of basal
till38 (see ‘Methods’ section). Glacial isostasy is modelled by coupling
IGM with the gFlex lithospheric flexure model39, after Mey et al.21.

The experiment setup of Jouvet et al.22 is however improved by
using an Alps-specific climate record (instead of the EPICA40 ice core
record) as input to our glacial index scheme22,41 (Fig. 2e). The applied
signal combines the Bergsee lacustrine record42 (35–30 ka: Black For-
est, Southern Germany) and the Sieben Hengste speleothem δ18O
record43 (30–18 ka: Bernese Alps, Switzerland). Further improvements
of the setup include an avalanche scheme re-distributing snow and ice
accumulatedon steep slopes (>45°)down to the glacier surface, and an
elevation-dependent parameterization of the basal till friction angle,
enabling a spatially-variable bed strength (see ‘Methods’ section). In
the main overdeepened valleys of the Alps (e.g. the Rhône valley), the
thickness of unconsolidated infill sediments present before the last
glaciation remains debated21,44. Here, we test the impact of valley-fill
sediments on the ice field’s LGMgeometry by using two distinct digital
elevation models within our ensemble (see Supplementary Table 1,
‘Methods’ section). In the first digital elevation model (from Jouvet
et al.22), only present-day lakes and glaciers are removed45, while the
second (fromMey et al.21) additionally removes all valley-fill sediments
from major valleys across the Alps.

In this study, IGM makes use of a physics-informed con-
volutional neural network to emulate a high-order (three-dimen-
sional) Blatter-Pattyn ice-flow solver32 (see ‘Methods’ section).
This methodology reduces computational costs by several orders
of magnitude through efficient parallelization on GPU. This
approach enables us to run AIF-wide simulations (542,700 km2) at
a spatial resolution of 300m (grid size: 3006 x 2006). Over the
entire Alps, a 300m grid increases the total cell number for which
to compute ice flow by a factor of ~11 relative to 1 km (best
achieved so far20). While running a 20 kyr-long simulation at
300m would require ~2.5 years with PISM using a 32-core
(3.7 GHz) computer (or ~6 months using a state-of-the-art high-
performance computer), it is achieved in only ~2.5 days with IGM
using a single GPU (Nvidia RTX 4090).

Taking advantage of such capabilities, and after validating IGM’s
suitability through quantitative comparison with earlier PISM results
(see ‘Methods’ section), we ran AIF-wide simulations covering the full
LGM period, from 35 to 18 ka. To assess model-data agreement (see
below) and investigate the model sensitivity to the choice of para-
meters for a wide range of ice field evolution scenarios, we perform
100 simulations. Within this ensemble, we vary 10 key model para-
meters drawn from eight different components of the glacier system
which modify both ice properties and boundary conditions (see Sup-
plementary Table 1). The 100 parameter sets are sampled between
given parameter ranges using a Latin hypercube algorithm46, opti-
mised with a maximin criterion. This commonly used technique pro-
vides efficient and homogeneous sampling of parameter spaces with
high dimensionality, helping to optimally explore the variety of pos-
sible model responses46.

Model-data comparison scheme
Model-data agreement is first evaluated for ice extent by comparing
modelled maximum ice thickness fields against an empirical recon-
struction of AIF margins at the LGM originally produced by Ehlers
et al.17. In this study, we use the newest version of this outline (Fig. 1a),
which was updated by a series of studies5,8,47–53 providing more con-
straints on LGM margins of main AIF outlet glaciers (see ‘Methods’
section), and which is used widely within the community5,6,8,18,52,54. The
fit for each ensemble simulation is quantitatively assessed by com-
puting to total number of overlapping pixels between the modelled
LGM icemargin and rasterized polygonsmapped around the empirical
LGMoutline (see Figs. 1a, 2b, Supplementary Fig. 19). For this test, LGM
moraine polygons are mapped exclusively in regions of high con-
fidence in the position and broad LGM timing (35–18 kyr BP) of the AIF
margin due to abundant mapping and dating5,6,18. The overlapping
pixel counts are subsequently normalized to obtain a score between 0
(worse-fit simulation) and 1 (best-fit simulation). As a first model-data
comparison sieve, any simulations scoring below 0.8 (n = 58) at this
test were excluded (Fig. 2b). Here, the modelled LGM state for each
simulation is obtained by computing the maximum thickness reached
in each pixel at any time during the simulation, thus providing a time-
independent map of maximum modelled thickness and extent
(Fig. 1a). The precise dated timing of the LGM in specific regions is thus
not directly compared with the timing of the modelled LGM as part of
this model-data comparison scheme, which exclusively aims at finding
simulations with the most data-consistent AIF geometry (see Supple-
mentary Fig. 19).

Secondly, we assess model-data fit in ice thickness for the
remaining simulations by computing the differencebetweenmodelled
maximum ice surface elevations and 353 reported trimline elevations
from the literature10–16 (Figs. 1b, 2d, see ‘Methods’ section). To ensure a
direct comparison, modelled surface elevations are corrected by
computing and adding the LGM lithospheric deflection at each trim-
line location. Finding simulations with lowest mean and standard
deviation values in elevation difference helped minimise both the
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overall model-data misfit in ice thickness and its scatter, the latter
acting as a proxy for spatial variability in model-data agreement
(Fig. 2d, f). Simulations with mean and standard deviation values
exceeding 160m and 100m in elevation difference, respectively, were
sieved out (n = 32). This quantitative three-sieve model-data compar-
ison procedure was designed to isolate a group of 10 best-fit simula-
tions (10% of the ensemble) for further inspection. Finally, a visual
check of these 10 simulations by three experts enabled to identify two
outlier simulations which produce far too extensive ice margins

throughout theWestern and Northwestern Alps. After removing these
twooutliers, thefinal eight Not-Ruled-Out-Yet simulations (NROYs) are
found to be indistinguishable in quality of ice-extent fit with the
empirical LGM outline and are thus used for all subsequent quantita-
tive results reported in this study, using NROY means and standard
deviations in given metrics (Fig. 2). For visualisation and discussion
purposes only, simulation 37 was further selected as our best-fit
simulation, due to presenting the best combination of extent and
thickness model-data fit.
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Fig. 1 | Best-fit Instructed GlacierModel (IGM) 300m simulation (number 37) of
the Alpine Ice Field during the Last Glacial Maximum (LGM). a Shows the 2-D
field of modelled time-independent maximum ice thickness for simulation 37,
enabling the comparison between modelled LGM ice extent and the empirical
LGM outline of the Alpine Ice Field used in this study (black line, modified from
Ehlers et al.17). Black acronyms stand for main outlet glacier names: i.e. the Rhône
(RHO), Jura (JU), Lyon (LY), Durance (DU), Dora-Baltea (DB), Dora-Riparia (DR),
Oglio (OG), Tagliamento (TA), Drau (DRA), Salzach (SA), Inn (IN), Isar (IS), Rhein
(RHE), Linth (LI), Reuss (RE) outlet glaciers. The pink star highlights the location of
the Hörnli nunatak. Note that simulation 37wasmodelled using a basal topography
with valley fill sediments (See Supplementary Figs. 5, 6). b Displays the model-data

agreement in Alpine Ice Field ice thickness shown for our best-fit IGM ensemble
simulation (number 37), obtained by computing the difference between 353
quality-controlled trimline elevations from literature10–16 (see Methods section:
‘Empirical trimline elevation data’) and maximum modelled ice surface elevations
(time-independent). The black dash-dotted line represents the best-fit linear
regression for the data (R2 = 0.92). R2 stands for coefficient of determination. Note
that the mean and standard deviation (Stdev) of misfit displayed on panel b are
exclusive results of simulation 37, while statistics discussed in main text and
reported as the official study results (+ 146± 12m) are averaged over our eight Not-
Ruled-Out-Yet simulations (NROYs): see ‘Results’ section.

Article https://doi.org/10.1038/s41467-025-56168-3

Nature Communications |          (2025) 16:848 3

www.nature.com/naturecommunications


Improved LGM model-data fit
Overall, our model produces a thinner LGM ice field resulting in more
valley-confined ice flow (Fig. 3), and leading to a substantial increase in
model-data fit in ice surface elevation. Using the same trimline
dataset10 as Jouvet et al.22 and Seguinot et al.20 (n = 175), the mean
model-data misfit with observed trimlines for our best-fit IGM simu-
lations is + 191 ± 15m (NROY mean). The positive bias in modelled ice
thickness is reduced by 200% and 450% compared with these earlier
studies, respectively. When using a more extensive (n = 353), spatially
widespread, and quality-controlled trimline dataset10,11,13–16 (Figs. 1, 2,
4b, see ‘Methods’ section), the mean misfit value is further reduced to

+ 146 ± 12m (NROY mean). Across the Alps, modelled maximum ice
surface elevations are positively and well correlated with reported
trimline elevations (NROY mean r2 = 0.92) (see Supplementary Figs. 2,
3), withmisfit values for all trimlines presenting limited scatter (NROY-
mean stdev=94 ± 4m). Despite varying 10 key parameters con-
servatively (see Supplementary Table 1), all 100 simulations present
mean trimline misfit values that remain below previous and coarser-
resolution models’ best estimates20,22. This implies that increasing
model resolution from 2 km to 300m systematically produces a
thinner LGMAIF throughout theAlps (Fig. 3a), on averageby 218 ± 15m
(NROY mean) relative to Jouvet et al.22. Indeed, maximum AIF volume
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Fig. 2 | Instructed Glacier Model (IGM) 300 m ensemble results (n = 100 tran-
sient simulations). a, c Indicate the modelled Alpine Ice Field areal extent and
volume,fluctuating in linewith the combined climate signal42,43 used as input to our
glacial index scheme (e). b, d and f Show the model-data comparison scheme
applied to isolate best-fit simulations (NROYs: light blue dots in panel f) with a
3-sieves approach. For eachof panelsb,d, and f, grey dots are simulations removed
by previous sieves while black dots are simulations removed by current sieve (e.g.

black dots in panel f are simulations removed exclusively by sieve 3). The two red
crosses in panel f represent two outlier simulations identified through final visual
check and removed from the final pool of Not Ruled-Out Yet simulations (NROYs).
Final NROYs (simulations 5, 10, 17, 19, 24, 37, 53, and 74) are indistinguishable in
quality of model-data ice extent fit with the Last Glacial Maximum (LGM) empirical
outline used in this study. Stdev stands for standard deviation, PI for Pre-Industrial,
and GI for Glacial Index.
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(57.6 ± 2.1 x 103 km3) is here ~35% lower than when modelled at 2 km
(88.3 x 103 km3)22, whilemaximumAIF area is <2%different (Fig. 3). The
resulting ice thickness difference is spatially heterogeneous, however,
and most prominent for the Rhein and Garda outlet glacier catch-
ments. The NROYs, for instance, model both the adjacent Rhein and
Linth outlet glaciers reaching the mapped LGM moraines (Figs. 1, 3)
while keeping the Hörnli nunatak (47.4°N, 8.95°E) and its surrounding
hills ice free. Although well documented7,55, this LGM ice-field config-
uration was never achieved by previous AIF-wide simulations, which
instead modelled ice covering the entire region20,22.

The large and recurring model-data thickness offset obtained in
previous modelling efforts caused certain studies20,28,29 to suggest that
trimlines in the Alps may represent a warm-to-cold-based ice transi-
tion. Across our 100 simulations, we find highly variable modelled
basal ice temperatures at the locations of trimlines during the LGM,
with no apparent clusters towards distinct temperatures. This suggests
no relationship exists in ourmodelling between thermal boundaries of
basal ice and trimline formation (see Supplementary Fig. 4). These
results suggest that in the Alps, observed trimlines are likely true
indicators of maximum ice surface elevations during Quaternary gla-
cial maxima.

Motivated by potential uncertainties in the input climate forcing27

and our dependence to the glacial index approach41, our ensemble
features a catchment-specific precipitation offset scheme (see ‘Meth-
ods’ section). The latter permits simulation-specific climate variations

with possible localised changes in input precipitation ofbetween −40%
and +50%. Together with higher-resolution modelling, our approach
also improves model-data fit in LGM ice extent throughout the AIF,
relative to previous work (Figs. 1a, 4a). Where Jouvet et al.22’s PISM
simulation produced AIF margins more extensive than empirical
reconstructions (i.e. in the Rhein, Reuss, Durance, Jura, Vittorio-
Veneto, and Astico regions), our best-fit simulations produce less
extensive, more data-consistent ice margins. Conversely, the fit is
improved where previously-modelled AIF margins22 did not reach the
mapped ice margins (i.e. in the Drau, Inn, Isar, and Lyon regions)
(Fig. 4a). The LGM extent of the Drau outlet glacier (Figs. 1a, 4a), for
instance, was notoriously challenging to model accurately20,22,24. Our
NROYs reproduce its extent within 10 km of well-preserved and map-
ped local terminal moraines9, and present a margin shape consistent
with the consensus empirical outline17. However, we note three
instances, i.e. the Rhône, Dora-Baltea and Isère outlet glaciers, where
our NROYsmodel too extensive icemargins leading to a worse fit with
data than Jouvet et al.22’s model (Fig. 4a). We believe remainingmodel-
data misfits in ice thickness (+ 146± 12m, NROY mean) and in the
extent of certain outlet glaciers can either be, 1) Reduced further with
higher-than-300m resolution simulations and more extensive
parameter-space explorations using larger ensembles, 2) Related to
unavoidable uncertainties inherent to paleo trimline and LGMmoraine
identification due to challenges with landform preservation and dat-
ing, and 3) Related to uncertainties and biases in our input climate and

PISM
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IGM 300 m 
  NROYs

IGM 300 m 
  NROYs

a

b c

IGM (300 m: sim 37) - PISM (2 km) ice thickness

IGM thinner
IGM thicker

Alpine Ice Field areal extent Alpine Ice Field volume
PISM
2 km

0 50 100 200
km

Mean: -230 m
Stdev:  234 m
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Fig. 3 | Difference in modelled Last Glacial Maximum (LGM) ice thickness
between 300m and 2km. Here, our best-fit Instructed Glacier Model (IGM)
simulation with a spatial resolution of 300m (number 37) is compared against the
Parallel Ice Sheet Model (PISM) simulation at 2 km resolution by Jouvet et al.22

(panel a). Stdev stands for standard deviation. The empirical LGM outline of the
Alpine IceFieldused in this study (modified fromEhlers et al.17) is highlightedby the
black line. b, c present time series (30–18 ka) of modelled Alpine Ice Field areal

extent and volume forboth our IGM300mNot-Ruled-Out-Yet simulations (NROYs,
n = 8, coloured lines) and the 2 km PISM simulation22. Note panel a only displays
coloured pixels where ice is modelled by both IGM and PISM simulations (when
maximum ice thickness is reached in each pixel), as this is required to compute the
thickness difference. The full LGM ice extent modelled by our best-fit simulation is
instead shown in Fig. 1a.
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b Locations of trimline evidence used

Coutterand (2010)

Kelly et al. (2004)

Wirsig et al. (2016)
Zasadni (2010)

Tandardini et al. (2013, 2022)

Hippe et al. (2014)

a IGM (300 m: simulation 37) vs PISM (2 km) LGM extent
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IGM & PISM overlap
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Better extent fit
Worse extent fit

Fig. 4 | Best-fit Instructed Glacier Model (IGM) 300m simulation (number 37)
results. a Highlights the change in Last Glacial Maximum (LGM) ice extent fit
between our best-fit IGM simulation (simulation 37) and the 2 km Parallel Ice Sheet
Model (PISM) simulation by Jouvet et al.22. The equal symbols suggest model-data
fit in ice extent is comparable between IGM at 300m and PISM at 2 km. Panel b

highlights the locations of the 353 quality-controlled trimline elevations from
literature10–16 (see ‘Methods’ section), as well as the empirical LGM outline of the
Alpine Ice Field used in this study (modified fromEhlers et al.17) in black. Themap in
panel b was produced using ArcGIS Pro 3.2.2 (Esri), and displays the 30m digital
elevation model from ALOS World 3D DEM82 (version 4.1).
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surfacemass balance parameterisation. A combination of impact from
these three mechanisms is also considered likely. For the latter, future
improvements in the input climate through higher-resolution regional
climate modelling and more transient simulations accompanied by a
more complex energy balance model may help reduce some of the
remaining model-data misfits.

Intra-NROY variability
Overall, our NROYs show few clusters within the sampled ranges of the
10 ensemble-varying parameters (see Supplementary Fig. 5). An
exception is the Glen’s flow law enhancement factor (E), with NROY
values all greater than one. Thus, good model-data fit may require
more deformable ice than modelled with default flow law constants
(E = 1, n = 3). The lack of clusters in other parameters indicates a better
model-data fit can be obtained with highly variable parameter values,
making optimal parameter configurations difficult to predict. This
variability justifies a perturbed ensemble approach to maximise
model-datafit, as numerous localminimamay exist.Moreover, twoout
of eightNROYswere achievedusing a basal topographywithout valley-
fill sediments, while the remaining six were not (see Supplementary
Fig. 5). A sensitivity analysis on the best-fit simulation (37) further
reveals that at the AIF scale, the removal of thick (>300m) valley-fill
sediments prior to glacier advance does not significantly impact ice
flux, glacier build-up rates, ice-field geometry, and thus model-data fit
at the LGM (see Supplementary Fig. 6). Therefore, we find inaccurate
thickness estimations of valley-fill deposits prior to the last glaciation
have little impact on the quality of AIF-wide models of the LGM.

Discussion
Our higher-resolution model simulations (300m instead of 1–2 km in
previous studies20,22) result in thinner ice and glacier surface lowering
across the AIF during the LGM. We hypothesise that localised ice flow
speedup is themain underlyingmechanism responsible for this result.
Indeed, our NROYs show increased ice velocities within main valley
troughs and certain outlet glacier tongues relative to previous coarser
models20,22 (Figs. 5c, d, 6a, 7). At these locations, NROYs produce a
more topographically constrained ice flux, with ice flowing into nar-
rower, deeper valleys featuring steeper sidewalls and more pro-
nounced topographic bottlenecks (Figs. 5, 6a).When ice in such valleys
drains large glacier catchments, NROYs produce greater flow con-
vergence, with higher-magnitude venturi effects causing ice flow
speedups (Figs. 5, 7). The venturi effect here applies as it describes the
increase in an incompressible fluid’s velocity as it passes through a
constriction, in order to respect the principle of mass conservation.
Moreover, we expect this positive correlation between bed resolution
and flow speed in regions of highly topographically constrained ice
flux (narrow, deep valleys) to bemore pronounced when solving high-
order (three-dimensional), rather than zero-order or hybrid (e.g.
PISM), ice flow physics. Here, the high-order Blatter-Pattyn solver33

used in IGM32 considers both the vertical and horizontal components
of strain through the ice column56, which helps produce strong ice
velocity gradients andpromotes the formation of lateral shearmargins
in valley-confined settings, thus encouraging higher glacier velocities
when increasing spatial resolution57.

The largest velocity increases (+ 600myr−1) are found within
topographic bottlenecks and deep valleys of the Rhône, Rhein, Dora-
Baltea, Garda, Inn and Isar glacier catchments (Fig. 7). We also find a
greater modelled AIF-mean surface slope of 5.9 ° at 300m versus 2.0 °
at 2 km resolution22. A more efficient drainage configuration asso-
ciated with steeper ice surfaces necessarily causes ice thinning for a
given accumulation rate, due to mass conservation. Therefore, com-
bined with a better resolved topography producing deeper valleys, we
argue localised flow speedups explain the resulting lowering of mod-
elled ice surfaces (Fig. 5), leading to an improved fit with observed
trimline elevations (Fig. 1b).

When averaged over the entire AIF, however, differences in ice
flux betweenmodels of 300m and 2 km22 resolution remain small (see
Supplementary Figs. 7, 8), with a NROY-mean difference in depth-
averaged velocity of only +12 ± 6m yr−1. This is likely associated with
the compensating effect of upper accumulation zones, where a 300m
resolution model leads to lower velocities relative to 1–2 km models.
Indeed, a higher-resolution topography resolves high-elevation sum-
mits exposed to lower air temperatures, thus increasing the potential
for cold-based ice. Here, we find modelled cold-based regions cover
14 ± 3% of the AIF (NROY mean) (Fig. 6b), slightly more than the ~11%
modelled at 2 km resolution22. Due to reduced basal melt and
increased effective pressure, regions of increased resistance to basal
sliding (yield stress >5 x 105Pa) thus cover a larger proportion of the
AIF. However, the majority of the ice volume is located in deep Alpine
valleys draining large catchments, where higher-resolution modelling
causes faster flowand thinning. Hence, although regions of slower and
faster flow between 300m and 2 km22 models cover similar total areas,
localised flow speedups force negative thickness differences to dom-
inate. As a result, when modelling at 300m versus 2 km22, the LGM
volume of the entire AIF decreases substantially (~ 35%) (Fig. 3).

The improvedmodel and representation of faster ice flow inmain
valleys has implications for better constraining Quaternary Alpine
landscape evolution. Indeed, the localised flow speedups modelled
with our NROYs could imply higher-than-previously-estimated erosion
rates within major valleys and topographic bottlenecks of the Alps
during Pleistocene glacialmaxima. Using a non-linear erosion law58, we
find that higher localised basal velocities obtained at 300m resolution
increase the subglacial erosion potential by factors of 2–10 relative to a
2 km model22 (see Supplementary Figs. 7, 9). In our NROYs, basal
velocities at the LGM typically reach values of 800–1300myr−1 within
regions of topographically constrained fast flow (e.g. the lower Garda
valley, Fig. 6a). Depending on the chosen erosion law constant and
velocity exponent59,60, and assuming no negative feedback from ero-
ded material shielding bedrock, such basal velocities could result in
erosion rate magnitudes of up to tens of centimetres per year. As
previously shown59,61, regions of fast-flowing ice can thus generate
highly localized, rapid valley overdeepening. This could help explain
the disproportioned incision of major Alpine valleys draining large
catchments, such as the Rhône valley towards Martigny (bedrock
~500m below sea level)62, argued to have been deepened by 1–1.5 km
in about 1 million years63, for instance. This highlights the importance
of high-resolution glacier modelling for accurate quantification of
Pleistocene valley incision rates across the European Alps. Key ques-
tions remain concerning the transition time frompre-glacial to current
topography and the episodic versus periodic nature of Pleistocene
incision signals in theAlps63.Ourhigh-resolution,moredata-consistent
simulation and GPU-based approach could help design future experi-
ments to explore such research questions.

Moreover, the improved model-data agreement enables us to
reconstruct potential asynchronies in thewaxing andwaning signals of
different AIF outlet glaciers during the LGM. NROY-mean results
indicate 12 out of the 15 largest outlet glaciers reach maximum LGM
thickness and extent synchronously, at around 25.1 ka (see Supple-
mentary Fig. 10), when our climate forcing produces peak cooling
(Fig. 2e). Four main outlet glaciers however display an asynchronous
response (see Supplementary Fig. 10). These include the Dora-Baltea
and Dora-Riparia outlet glaciers, which reach maximum extents eight
and three centuries before other sampled outlet glaciers, respectively.
The modelled Rhône outlet glacier reaches maximum extent around
24.6 ka, five centuries after most glaciers (including the nearby Rhein
outlet glacier) started to retreat from their maximum positions. In all
NROYS, the Lyon outlet glacier remains near its maximum extent until
24.6 ka, in line with recent geochronological evidence6 (see Supple-
mentary Fig. 11). Results thus suggest the Lyon and Rhône outlet gla-
cierswere impacted by notablemechanismsof inertia during the LGM,
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Fig. 5 | Three-dimensional views of best-fit Instructed Glacier Model (IGM)
300m simulation (number 37). Here, the simulation is compared against the
Parallel Ice Sheet Model (PISM) 2 km simulation by Jouvet et al.22, and displayed by
showing modelled Last Glacial Maximum (LGM) ice thickness (a, b), ice surface
velocity (c, d), and basal topography (e, f) fields in the main Rhein valley (Alpenr-
hein). Ice thickness and velocity fields are plotted above a 30m digital elevation

model of the local topography, also shown in g. h Indicates the location and
direction of the three-dimensional view shown in other panels. More versions of
thisfigure are available for other regions of the Alps in Supplementary information.
All panels were produced using ArcGIS Pro 3.2.2 (Esri), and panels a–d, and
g, h include the 30m digital elevation model from ALOS World 3D DEM82 (version
4.1). h Features geographical data from OpenStreetMap.

Article https://doi.org/10.1038/s41467-025-56168-3

Nature Communications |          (2025) 16:848 8

www.nature.com/naturecommunications


Modelled AIF during LGM for best-fit IGM simulation 37
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Fig. 6 | Alps-wide icevelocity, basal temperature, andEquilibriumLineAltitude
(ELA) from our Instructed Glacier Model (IGM) results. Are displayed: the
modelled Last Glacial Maximum (LGM: 24.8 ka) fields of ice surface velocity (panel
a), pressure-adjusted basal ice temperature (b), and ELA during the climatic LGM

(25.1 ka) along with ice surface elevations of the Alpine Ice Field ablation zone, and
Surface Mass Balance (SMB) in accumulation zone (c). In c, black numbers indicate
the average ELA (in m a.s.l.) for the highlighted sectors.
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likely related to their longer ice flow paths causing slower enthalpy-
induced responses of margin extents to changes in air temperature.
Such modelled asynchronies are likely too short-lived to be detected
by dating techniques (e.g. surface exposure dating) which, at the LGM,
typically produce analytical uncertainties of 0.8–2.0 kyr. We note
previous AIF-wide models20,22 produced greater inter-glacier asyn-
chronies (up to 3-4 kyr) than our NROYs. This may be due to these
previous studies20,22 using a different glacial index signal (from Ant-
arctic ice core40) but also to coarser-resolution models producing
thicker AIFs, with lower surface slopes and lower velocities in main
draining valleys, enabling possible delays in flux adjustment to climate
variations. Moreover, a thicker modelled ice field can generate greater
and more spatially-heterogeneous climate-response times due to a
slower enthalpy feedback on basal ice temperatures and sliding.

The improved model-data fit also enables us to better constrain
the former AIF surface mass balance field during the LGM, with
implications for discussing the LGM climate of the European Alps.
Here, all our NROYs consistently produce surfacemass balance fields
with high inter-regional variability in equilibrium line altitudes during
the climatic LGM (~ 25.1 ka with our data), with amaximumdifference
of up to ~1.1 km between the southwestern Jura (~ 750m) and upper

Garda ( ~ 1860 m) catchments (Fig. 6c). NROY results suggest north-
to-south increases in equilibrium line altitudes (of up to 850m) in
nearly all regions of the former ice field. One exception is the Aare
and Western Ticino-Toce catchments, which display similar equili-
brium line altitudes (~ 1500m) (Fig. 6c). On average, we find that
during the LGM, modelled equilibrium line altitude gradients
between northern and southern glaciated regions of the Alps are
either similar or greater than regionally equivalent gradients repor-
ted for the present-day ( ~ 2000AD)64. Our modelled surface mass
balance fields are thus incompatible with the recurring hypothesis of
a shift from the contemporary westerly-dominated to a more
southerly-dominated moisture advection pattern during the LGM43,
which would lead to lower north-to-south equilibrium line altitude
gradients.

The present-day uplift signal in the European Alps is also subject
to a long-lasting debate65,66, as it results from a combination of
mechanisms acting over various timescales (103 to 107 years), and
whose relative contributions remain uncertain. These drivers include
erosional unloading, tectonic deformation, lithospheric slab pro-
cesses, and postglacial rebound21,67. Process-based uncertainties fur-
ther arise from a lack of crustal shortening detection in the Western

IGM (2 km) - PISM (2 km) velocity difference at LGM a

b IGM (300 m) - PISM (2 km) velocity difference at LGM 

IGM faster

IGM slower

0 50 100 200
km

0 50 100 200
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Fig. 7 | Alps-wide differences in modelled ice flux between 300m and 2km.
Panel a shows the differences in depth-averaged ice velocity (ice flux) at the Last
Glacial Maximum (LGM) between the Instructed Glacier Model (IGM) ran at 2 km
resolution (see ‘Methods’ section: ‘Model validation’) and the Parallel Ice Sheet

Model (PISM) 2 kmsimulation of Jouvet et al.22. Tovisualize the impact of increasing
model spatial resolution on ice velocities and ice flow patterns; panel b shows the
same velocity difference but with IGM ran at 300m resolution instead (ensemble
best-fit simulation 37).
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and Central Alps68. Our AIF model has implications for better con-
straining the contribution of one of the drivers, i.e. postglacial
rebound. A thinner ice field (Fig. 3) necessarily generates less glacial
isostatic adjustment. During the LGM, we find our NROYs produce a
maximumcrustal deflectionnear theAIF centre of 93.1 ± 13.5m, a value
between 1.5 and 3 times lower thanprevious glacier-modelling-derived
estimates (150–280m21,22), despite using variable lithospheric effective
elastic thickness values (see Supplementary Figs. 5, 12, ‘Methods’ sec-
tion). This may imply a smaller postglacial rebound than previously
proposed, althoughwe acknowledge uncertainties in the uppermantle
architecture (lithospheric mantle and asthenosphere) preclude any
definitive answers.Moreover, the viscous, time-dependent component
of the deformation, which causes a delay between crustal (un)loading
and theflexural response, is not considered here asour isostaticmodel
(gFlex) only accounts for the elastic deformation obtained after all
crustal loads have been entirely compensated39. Our model could
however inform future investigations using more complex earth
deformation models to better assess the contribution of former ice
unloading to the uplift signal observed today in the European Alps.

The approach presented in this study also has implications for
improving the reconstruction of other Quaternary ice fields and ice
sheet histories. Indeed, achieving spatial resolutions required for a
data-consistent LGMmodel of theAIFwaspreviously unattainablewith
traditional central-processing-unit-based models. This study demon-
strates that physics-driven machine learning and GPU-based proces-
sing makes simulating a continental-scale ice field at high (300m)
resolution with a thermo-mechanically coupled, three-dimensional,
andhigh-ordermodel, possible. This ismoreover achieved at a fraction
of traditional models’ computational costs and with identical para-
meter modularity. We thus argue that physics-informed GPU-based
models open the door to a new era ofmore accurate paleo ice field and
ice sheet modelling. In particular, the ability tomore accuratelymodel
the complex dynamics of topographically-constrained large-scale ice
fields, such as the AIF during the LGM, through high-order modelling,
higher spatial resolutions and wider ensemble-type explorations of
parameter spaces, will likely reduce model-data misfits in many other
studiedmountain ranges. Investigations that would likely benefit from
this modelling approach include the reconstructions of former large-
scale ice fields during Quaternary glaciations in Patagonia, Alaska,
high-mountain Asia, Turkey, Georgia, California, Peru, the Pyrenees,
New-Zealand, and Iceland, to name only a few. This improvement in
modelling capabilities should also spark new motivation to collect
more field data to better constrain the former evolution of ice extent
(e.g. with more detailed terminal and lateral moraine mapping and
dating5), ice thickness and thinning rates (e.g. with new trimlines and
cosmogenic nuclide dipstick data69), and ice internal flow direction
and dynamics (e.g. with lineation mapping and flow set
reconstructions70, new erratic transport and provenance databases,
borehole data and englacial stratigraphic reconstructions71,72) of other
former glaciers, ice fields and ice-sheets. This has implications for not
only scientific discoveries in paleoglaciology, but also across other
disciplines studying processes linked to Quaternary glacial history,
including archaeology, paleoclimatology, paleoecology, and
geomorphology.

We also believe this technology may permit more accurate
simulations of past and future Greenland- and Antarctic-ice-sheet
change, by facilitating ice-sheet-wide simulations at considerably
higher resolutions than previously achieved and at lower computa-
tional costs. This would allow for broader explorations of parameter
spaces and ice-sheet evolution scenarios, with implications for more
accurately modelling basal conditions and ice-ocean interactions
towards grounding lines, crucial for better projecting the future
response of continental ice sheets to climate change38. Moreover,
reducing Quaternary model-data misfits, as is achieved here with the
AIF, may be important for improving the paleo initialisation

procedures of Antarctic andGreenland ice sheetmodels, which greatly
impact their future projections38,41. Therefore, we expect physics-
informed, GPU-based models to bring advances in projecting future
global sea level rise and environmental change associated with the
response of contemporary ice sheets to climate change.

To conclude, we believe the development and application of
physics-driven AI and GPU-based glacier and ice-sheet models should
become a primary avenue of future research due to its wide and
multidisciplinary implications for the fields of Quaternary and cryo-
sphere science.

Methods
The glacier model
The evolution of glacier ice thickness, denoted as hðx, y, tÞ, starting
from an initial glacier shape, is governed by mass conservation, which
connects elevation change, ice dynamics, and mass balance through
the following continuity equation:

∂h
∂t

+∇ � �uhð Þ=MB, ð1Þ

where ∇ represents the divergence operator for the horizontal vari-
ables ðx, yÞ, �u= �u, �vð Þ denotes the vertically-averaged horizontal ice
velocity field, and MB represents the surface and basal mass balance
functions. Equation (1) is solved using an explicit upwind finite volume
scheme on a regular grid which allows the model to update the ice
thicknesswhile conservingmass. In the following sections,wedescribe
in turn individual IGM31,32 sub-models used in this study for simulating
processes of ice flow, ice enthalpy, climate forcing, surface mass
balance, isostatic adjustment, and avalanching.

Ice flow
Ice flow dynamics is modelled using Glen’s flow law:

D=Aτn ð2Þ

whereD and τ denote the strain rate and deviatoric stress tensors,with
A representing the rate factor, and n= 3 as Glen’s exponent. Here, we
use the Blatter-Pattynmodel33, which disregards second-order terms in
the thickness/length ratio in the momentum conservation equation.
Thismodificationmakes solving the stress balance easier thanwith the
original Full-Stokes model. For our boundary condition, we use a
nonlinear Weertman friction condition (e.g. Schoof & Hewitt73),
relating the basal shear stress τb to the sliding velocity ub as follows:

τb = � cjubjm�1ub, ð3Þ

wherem>0, c= c x, yð Þ>0 is the sliding coefficient.
Rather than using a traditional solver, IGM models the ice flow

using a physics-informeddeep learning emulator74 trained tominimise
the energy associated with the Blatter-Pattyn equation32. Thanks to its
efficient evaluation and training on GPUs, the neural network con-
siderably reduces computational cost with negligible accuracy losses
relative to a traditional ice-flowsolver32. Theneural network features 16
two-dimensional convolutional layers representing 140, 000 trainable
parameters. We use the hyper-parameters found by Jouvet et al.31. To
obtain initial weights and facilitate convergence, the neural network is
pretrained over a diverse catalogue of glaciers and flow regimes32.
Moreover, it is frequently re-trained during transient IGM simulations
(every seven iterations) to adjust to new glacier states obtained
through time. This frequency was found to be a good trade-off main-
taining accuracy while keeping computational cost relatively low.
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Ice enthalpy
Temperature within the ice is modelled with an energy-conservative
enthalpy model following Aschwanden et al.34. Ice enthalpy, E, is a
function of ice temperature, T , and ice water content, ω:

EðT ,ω,pÞ= ciðT � Tref Þ, if T<Tpmp,

Epmp + Lω, if T =Tpmp, 0≤ω

(
, ð4Þ

where the temperature, Tpmp, and enthalpy, Epmp, at pressure-melting
point of ice are defined by

Tpmp =T0 � βp, ð5Þ

Epmp = ci Tpmp pð Þ � Tref

� �
ð6Þ

According to the definition of enthalpy prescribed above, we
have two possible modes: i) When the ice is cold (i.e. below the
melting point), the enthalpy is simply proportional to the tempera-
ture minus a reference temperature. ii) When the ice is temperate,
the enthalpy continues to increase. In this case, the additional com-
ponent, Lω, accounts for the creation of water content through
energy transfer. The enthalpy model consists of an advection-
diffusion equation, with horizontal diffusion being neglected, and
strain heating and drainage as source terms. At the modelled ice
surface, the enthalpy equation is constrained by the surface tem-
perature provided by the climate forcing. Borehole data show the
offset between temperatures of surface air and of the active ice layer
at glacier surfaces is challenging to constrain and varies through
both space and time75. Here, we set this offset as an ensemble-varying
parameter with possible values ranging between 1 °C and 3 °C (sur-
face ice being slightly warmer), bracketing the median (1.85) of
observed offset values (n = 41) reported by Zagorodnov et al.75. At the
glacier bed, there are multiple boundary conditions for the enthalpy
equation depending on the bottom ice layer and bed surface
temperature34, the latter being forced, in this study, by geothermal
heat flux data from Goutorbe et al.35. The 3D advection-diffusion
equation is solved using a semi-implicit scheme with finite differ-
ences at each time step, defined by the time stepping of the mass
conservation. As a result, the ice enthalpy, temperature, and basal
melt rate are all updated at each time step. The enthalpy impacts
both internal ice flow by influencing the rate factor, A, via the Glen-
Paterson-Budd-Lliboutry-Duval law56:

A T ,ωð Þ=A expð�Q=ðRTpaÞÞð1 + 181:25ωÞ, ð7Þ

and basal sliding, c, via meltwater production when pressure melting
point is reached. Our implementation of the enthalpy formulation in
IGM successfully passed the two benchmark experiments proposed by
Kleiner et al.76 and Hewitt & Schoof77. These tests, as well as more
details regarding the enthalpy model can be found alongside IGM’s
source code (https://github.com/jouvetg/igm).

Sliding parameterization
Following Bueler & van Pelt78, the basal water thickness in the till layer,
Wtill , is computed from the basal melt rate, mb, obtained from the
enthalpy as follows:

∂Wtill

∂z
=
mb

ρw
� Cdr , ð8Þ

where Cdr is a simple drainage parameter. The till layer is assumed to
be saturated when the basal water layer thickness reaches a caping
valueofWmax

till =2m. The effective thickness ofwaterwithin the till layer
Ntill is computed from the saturation ratio s =Wtill=W

max
till by the

formula78:

Ntill = min p,N0
δP
N0

� �s

10ðe0=CcÞð1�sÞ
� �

, ð9Þ

Where p is the ice overburden pressure and the remaining parameters
are constant. The sliding coefficient, c, in (3) is defined by the Mohr-
Coulomb law56 that involves the effective pressure in the till Ntill :

c= τcu
�m
th =Ntill tanðϕÞu�m

th , ð10Þ

whereϕ is the till friction angle25. Here, using the assumption that basal
materials are generally weaker (softer sediments) in valley troughs
than overmountain tops38,ϕ is parameterised to be a piece-wise linear
function of bed elevation, b:

ϕ x, yð Þ=
ϕmin, b x, yð Þ ≤ bmin,

ϕmin + b x, yð Þ � bmin

� 	
M, bmin <b x, yð Þ< bmax,

ϕmax, bmax ≤ b x, yð Þ:

8><
>: ð11Þ

Between ensemble simulations, we modify the elevation-
dependency of ϕ by varying upper and lower bed elevation thresh-
olds (bmin, bmax) between ranges of (−500, −100) metres, and (2400,
3000) metres, respectively, while till friction angle thresholds (ϕmin,
ϕmax) are set to values of 15 and 50 (see Supplementary Table 2). To
further modify the sliding coefficient for a given basal shear stress, the
parameter uth also varies within our ensemble between 100 and
2000m yr-1.

Climate forcing
In this study, input climate forcing fields are taken from Jouvet et al.22.
First, the Weather Research and Forecasting regional climate model27

was used to downscale time slice simulations of a global Earth system
model79 to high-resolution (2 km) over the European Alps. This work-
flowproduced climate snapshots, includingweeklymean and standard
deviation data, for the pre-industrial (1850 AD), LGM in the Alps
(~ 24 ka) and Marine Isotope Stage 4 (65 ka) periods (see Figs. 5–7 in
Jouvet et al.22 for more details). Here, we extend climate data between
these three snapshot states using a glacial index approach (e.g. Niu
et al.41). This method creates continuous climate fields with two given
states: the pre-industrial climate snapshot with limited ice cover in the
Alps, and the LGM climate snapshot. The glacial index function is built
by linearly rescaling a climate proxy signal such that the glacial index is
close to 1 at the LGM and close to 0 at the pre-industrial. In this study,
we use an Alps-specific climate proxy signal as input to our glacial
index scheme (Fig. 2e), which combines the Bergsee lacustrine
record42 (35–30 ka: Black Forest, Southern Germany) and the Sieben
Hengste speleothem δ18O record43 (30–18 ka: Bernese Alps, Switzer-
land). Note that input air temperature fields refer to the surface
topography given as input to the regional climate model, which fea-
tures glaciers at their maximum extent for Marine Isotope Stage 4 and
the LGM states, and the present-day topography for the pre-industrial
state. To simulate the temperaturewhen themodelled surfacedeviates
from the reference one, we apply a vertical and linear correction using
an atmospheric lapse rate of 6 °C km−1.

While the above climate forcing improved the overall model-
data fit in the LGM extent of the AIF relative to previous studies20,24,
certain outlet glacier extents remained either too large or too small
despite varying non-climatic parameter extensively. We assume
these isolated misfits are likely related to uncertainties in the input
climate and/or limitations of the glacial index approach, and thus
implement an ensemble-varying and glacier-catchment-specific pre-
cipitation offset scheme. To do so, we apply time-independent scalar
multipliers to the input precipitation field over the Rhein (reference
multiplier = 0.9), Isar (1.33), Jura (0.7), Drau (1.33) and southernmost
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Alps (0.7) regions. In other regions, precipitation remains equal to
the original input field. The magnitude of these offsets is made
simulation-dependent by using an ensemble-varying multiplier
parameter (ranging between 0.85 and 1.15) that further modifies
reference offset values. Original precipitation values can thus be
modified by between -40% and +50%, depending on the region and
ensemble simulation (See Supplementary Table 1).

Surface mass balance
In this study, we parameterize IGM with a combined snow accumula-
tion andpositive degree-daymodel80 to compute surfacemassbalance
from input temperature and precipitation fields. In this scheme, pre-
cipitation generates surface accumulation (falls as snow) when air
temperature is below 0 °C and causes no accumulation (falls as rain)
when temperature is above 2 °C, with a linear transition in between.
Surface ablation, on the other hand, is computed proportionally to the
number of positive degree days. The positive degree day integral is
numerically approximated using week-long sub-intervals, following
Calov & Greve36. Positive degree day parameters are not well con-
strained and can vary in space and time. Thus, in our ensemble, the
melt factor for ice is simulation-dependent and varies between 6 and
9mm w.e. d−1 °C−1 (see Supplementary Table 1). The melt factor for
snow remains constant at 3mm w.e. d−1 °C−1. Our positive degree day
scheme alsomodels the refreezing (turned into net accumulation) of a
given proportion of the computed melt. This proportion is here made
simulation-dependent and varies between 50% and 70% within the
ensemble (see Supplementary Table 1). Note that no proglacial lake
module is implemented in this model setup, meaning that all ice is
assumed to be land-terminating. We consider this assumption to have
little impact on the LGMgeometryof the AIF sincemost overdeepened
basins of the Alpine foreland were eventually ice-filled during max-
imum glacier advance18.

Model initialisation
All IGM ensemble simulations are initialised with ice-free conditions at
35 ka. Althoughunrealistic, a sensitivity analysis reveals that starting an
ice-free, AIF-wide simulation at 40 ka instead does not impact model-
ling results at the LGM, as diagnostic model variables converge after
4–5 kyr of running the model (see Supplementary Fig. 13). Therefore,
as suggested by previous modelling work22, the response time of the
AIF to climate change during the last glaciation does not exceed 4–5
millennia.

Model validation
Before applying IGM and conducting AIF-wide simulations at 300m
resolution, we quantitatively assessed the model’s suitability and
fidelity in simulating the last glaciation of the European Alps. To do
so, we ran simulations at the same 2 km spatial resolution as Jouvet
et al.22 to quantitatively compare outputs with PISM25, a widely used
and well-tested model25. Unlike our higher-resolution (300m)
ensemble runs (see ‘Results’ section), these test simulations use the
same glacial index climate signal (EPICA ice core40), basal topo-
graphy, and space-independent basal till friction angle (ϕ = 30°)
parameterization as Jouvet et al.22. Furthermore, no avalanche mod-
ule is employed in this 2 km setup. This experiment resulted in a 2 km
simulation with IGM producing AIF extents, volumes, ice velocities,
surface mass balances and basal conditions that are consistent with
PISM outputs from Jouvet et al.22 (see Supplementary Figs. 14–16).
Between the two models, maximum AIF volume and areal extent
(reached in this case at ~24.5 ka) vary by less than 2%, while LGM ice
thickness differences remain minimal (−6 ± 147m). At 2 km, Alps-
wide differences in LGM ice flux between IGM and PISM are minor
with surface, basal, and depth-averaged velocities varying by
2 ± 110m yr−1, -27 ± 110m yr−1, and −6 ± 108m yr−1, respectively. This
test shows that IGM can be used to model the AIF’s last glaciation

with results comparable to a well-established ice-sheet model (see
Supplementary Figs. 14–16). Results are not expected to be 100%
identical, however, as important differences remain between the two
models, the most potent of which is the ice flow stress balance,
approximated with the SSA/SIA hybrid model in PISM25, and with the
higher-order Blatter-Pattyn33 model in IGM32.

Isostatic adjustment
In the European Alps, the lithospheric deflection caused by ice loading
during the LGM was large enough to notably influence ice surface
slope and elevation, and thus ice flow dynamics andmass balance (see
Supplementary Fig. 12). To account for space- and time-dependent bed
deflection, we couple IGM with the gFlex model39 which dynamically
computes the flexural isostatic adjustment using the two-dimensional
elastic thin-plate Eq. (1) in Mey et al.21. For gFlex-specific calculations,
the frequency of iteration is here set to 50 years while the spatial
resolution remains at 2 km. At the entire Alps scale, the impact of a
higher frequency or spatial resolution on modelled AIF evolution is
negligible81. For our 300m resolution IGM runs, we feed gFlex a space-
and time-independent lithospheric effective elastic thickness, repre-
senting the resistance to bending under specific vertical loads. This
elastic thickness is challenging to constrain and is thus set as an
ensemble-varying parameter ranging from 35 to 50km, after Mey
et al.21 (see Supplementary Table 1).

Avalanche scheme
Increasing spatial resolution with IGM produces finer and steeper bed
topographies in upper alpine catchments and accumulation zones.
Accurate modelling of transient glacier evolution on such topo-
graphies requires an approximate representation of avalanchingwhich
impacts ice accumulation, surface elevations, and flow velocities. With
IGM, we thus make use of an avalanche module that redistributes
modelled accumulation downslope until the glacier surface reaches a
given angle of repose value, here set to 45° across the domain and for
all simulations. A sensitivity analysis on the best-fit simulation (number
37) reveals that using a value of 35°, on the low-end of reported angle
of repose values for Alpine glaciers, does not generate a notable
impact on AIF-wide model-data fit in LGM ice extent (−0.03%) and
thickness (−3%), relative to 45° (see Supplementary Fig. 17). In our
simulations, the frequency of the avalanche module updates is set to
5 years.

Empirical trimline elevation data
Field-based estimation of trimline location and elevation is non-
trivial, yields geomorphological uncertainties, and can sometimes
be challenged by dangerous access conditions forcing remote
observations. Therefore, in this study, empirical trimline eleva-
tion data (n = 396), gathered from literature10–16, are quality-
controlled by comparing them against independent elevations
extracted from high-resolution (≤ 5m) digital elevation models at
their reported locations (see Supplementary Table 3). Given the
relatively low (<10m) vertical error of these satellite-derived
products, a trimline data point yielding a >50m offset between
the two independent elevations was here considered an outlier
likely due to error in measurement of either trimline geolocation
or elevation. Trimlines yielding >50m offsets were found to
represent ~11% of the original dataset (n = 43 out of 396). The
impact of removing these 43 presumed outliers on the mean
model-data misfit between modelled ice surface elevations and
reported trimline elevations is negligible (on average a ~ 2%
reduction). However, it notably reduces the standard deviation of
this misfit, on average by ~40%, thus decreasing scatter and
generating a notable improvement in model-data ice thickness
agreement. Details of the different digital elevation models used
for this analysis are listed in Supplementary Table 3.
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The empirical LGM outline of the AIF
The empirical LGM outline of the AIF used in this study was originally
produced by an Alps-wide compilation of geomorphological and
geochronological evidence by Ehlers et al.17. Since this key study, the
outline has been updated by a series of empirical investigations
improving the quality of LGM margin reconstructions in specific sec-
tors of the Alpine foreland. In this work, we use the most up-to-date
version of the outline. Here, weprovide a summary of themain studies
which have updated the LGM AIF outline since Ehlers et al.17. Gianotti
et al.50,51 have made updates to LGMmargins of the Ivrea outlet glacier
in the Dora Baltea region. Braakhekke et al.49 have done so for the Orta
region, Kamleitner et al.5 for the Verbano region, Ravazzi et al.53 for the
Oglio region,Monegato et al.48 for theGarda region, Federici et al.47 for
the Gesso region, Ribolini et al.8 for the Stura region, and Ivy-Ochs
et al.52 for the Dora Riparia region.

Data availability
The data that support the findings of this study are available in the
supplementary information document, and from the corresponding
author upon request. Additionally, the data presented in the paper
figures, along with a catalogue of videos displaying Alps-wide and
regional results from our best-fit model simulation, are available from
the following open-access online repository: https://doi.org/10.5281/
zenodo.14275231.

Code availability
The Instructed Glacier Model (IGM) source code (Python program-
ming language) and documentation are available from Guillaume
Jouvet’s GitHub repository at https://github.com/jouvetg/igm. Codes,
IGM version, and instructions required to reproduce this specific
study’s experiment and results are available from the following open-
access online repository: https://doi.org/10.5281/zenodo.14275231.
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