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Glossary (cf. Cogley et al., 2011)

Calving (of glaciers) Breaking off of ice from the front of glaciers into water; the term “dry calving” is sometimes used for the same
process but without water (sometimes generating ice avalanches).

Calving instability Rapid retreat and disintegration of glacier tongues ending in deep waters of the sea (tidal glaciers) or of lakes,
once their (calving) front loses contact with subaquatic moraines or rock thresholds forming in shallow water.

Cryosphere The domain of snow and ice on Earth; including seasonal snow, sea ice, continental ice sheets, ice shelves, glaciers and
ice caps, lake and river ice, daily, seasonally, and perennially frozen ground (permafrost).

Debuttresing Stress redistribution in steep valley walls as a consequence of unloading related to glacier vanishing, which can lead
to long-term rock deformation and slope instability.

Essential Climate Variable (ECV) Atmospheric, terrestrial, and oceanic phenomena selected to provide key policy-relevant
information from systematic monitoring as part of the Global Climate Observing System (GCOS) in support of the United Nations
Framework Convention on Climate Change (UNFCCC).

Glacier mass balance Relation between gain (accumulation) and loss (ablation) of glacier mass; accumulation is predominantly
through snowfall whereas ablation mainly takes place through melting of snow and ice but can also involve other processes such as
sublimation (loss of ice directly to vapor), calving of ice into lakes or the sea, snow erosion by wind or avalanching of ice from steep
glacier parts. The latter two can result in mass gain for neighboring glaciers. Long-term observation of glacier mass balance should
combine in situ measurements (snow pits, ablation stakes) for high temporal resolution and process understanding with indepen-
dent geodetic/photogrammetric mapping for overall volume/mass change and calibration. Values are reported as average rates of
change in glacier thickness corrected for snow/ice density (unit: meter water equivalent per year).

Global Terrestrial Network-Glaciers (GTN-G) The long-term observational network responsible for the worldwide monitoring of
glacier changes within GCOS. It is run in cooperation by the World Glacier Monitoring Service (WGMS; mainly in-situ measure-
ments), the Global Land Ice Measurement from Space initiative (GLIMS; remote sensing) and the National Snow and Ice Data
Centre (NSIDC; data management).

Polythermal glaciers Glaciers containing (“temperate”) ice at phase-equilibrium (“melting/freezing”) temperature as well as
(“cold”) ice at lower temperatures.

*Change History: September 2020. W Haeberli, C Huggel, F Paul, and M Zemp updated the text.
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1 Introduction

Large areas of snow and ice are close to melting conditions and, therefore, react strongly to climate change. Historically, this
fundamental principle has helped to identify the Quaternary ice ages and the related dramatic changes in climate and environ-
mental conditions during the younger parts of the Earth history. Modern programs of systematic worldwide climate observation
include glaciers as key indicators in nature and as unique demonstration objects with respect to ongoing atmospheric warming
trends and possible future climatic and environmental conditions on the Earth. Within about three centuries, the perception of
glaciers in the mountain landscape thereby changed fundamentally. This started from an early view of icy mountains as holy seats of
gods or a threat to humans (montes horribiles). Especially in the densely populated Alps, romantic admiration of green, garden-like
landscapes with clean, white and seemingly eternal firn and ice in a blue sky (Fig. 1; cf. Rasmo et al., 1981) became a striking and
often-used symbol of an intact human-environment relation (Haeberli, 2007). The first comprehensive scientific field studies on
the ice of glaciers (Fig. 2; Agassiz et al., 1847; cf. Rasmo et al., 1981) later led to the initiation of systematic monitoring toward the
end of the nineteenth century (Forel, 1895). Today, satellite-born virtual perspectives using digital terrain information provide a
new, very different view of the Alps and clearly reveal past glacier extents with their exposed moraine deposits (Fig. 3). Glaciers and
their striking changes have become evident worldwide and thereby today indeed one of the most often-invoked icons of rapid and
worldwide climate change (WGMS, 2008; Zemp et al., 2015).

Melting of snow and ice under the influence of above-zero temperatures is a common experience for a great number of people.
Glacier changes as a response to climatic changes—the focus of this article—can not only be physically recognized but can also be
qualitatively understood without an academic or scientific background. The task of the related field of science is to understand,
quantify, and assess what is happening with regard to mountain ice and climate in nature. The following text emphasizes the
internationally coordinated efforts to fulfill this task in view of difficult policy-relevant questions about climatic and living
conditions for future generations. It starts with a short overview of cryosphere components in the climate system in order to
characterize the specific function of glaciers. Based on this, it then describes the development of coordinated worldwide glacier
monitoring for more than a century, summarizes the observed changes, discusses perspectives and challenges for the coming
decades, and tries to outline some of the consequences of resulting environmental impacts in view of possible adaptation options.
Thereby, the anticipation, understanding and modeling of process interactions and of corresponding geomorphic systems in rapidly
developing new cold-mountain landscapes constitutes a major challenge for, and rapidly emerging field of, geomorphological
research (Haeberli, 2017).

Fig. 1 The romantic view of glaciers, snow, and ice: Mont Blanc, French Alps, from Sallenches in 1802. Painting by Pierre-Louis de la Rive. Adapted from Rasmo
N, Réthlisberger M, Ruhmer E, Weber B, and Wied A (1981) Die Alpen in der Malerei. Rosenheim: Rosenheimer, with permission from Rosenheimer.
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Fig. 2 Early glaciologists at Unteraar Glacier: The Agassiz team in the Hotel des Neuchatelois (the large boulder serving as shelter) on the medial moraine of
Unteraar Glacier. Lithograph after a drawing by Joseph Bettanier published by Agassiz (1840—41). Adapted from Rasmo N, Réthlisberger M, Ruhmer E, Weber B, and
Wied A (1981) Die Alpen in der Malerei. Rosenheim: Rosenheimer, with permission from Rosenheimer.

Fig. 3 Oblique view of Morteratsch Glacier, Swiss Alps. IRS-1C satellite image of September 20, 1997 (10 m resolution, black and white) fused with a Landsat
image of August 31, 1998 (25 m resolution, color) and draped over a digital terrain model. Marked glacier extents are 1850 (red) and 1973 (blue).
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2 Glaciers and the cryosphere components in the climate system

In order to better understand the specific role of glaciers in the climate system and their response to climate change, it is useful to
first consider them as part of the entire cryosphere (Table 1). Ongoing climate-related changes in snow and ice can be spectacular
(IPCC SROCC, 2019). Together with easily accessible information from deep ice core drilling on the variability of the greenhouse
effect in recent Earth history, the widespread recognition and knowledge of Arctic sea ice reduction, deep permafrost warming and
worldwide glacier shrinking indeed constitute a fundamentally important source and background of the now-existing awareness
with respect to questions of ongoing climate change.

Research on climate and the cryosphere is a vast scientific field. A number of comprehensive overviews have become available;
among others are: Bamber and Payne (2004), Knight (2006), IGOS (2007), UNEP (2007, 2009), Singh et al. (2011), and IPCC
SROCC (2019). The Fifth Assessment Reports of the IPCC (2013, 2014) contain specific cryosphere chapters and deal with
cryosphere aspects in various other sections such as regional chapters or chapters about sea level and paleoclimate. Snow cover,
sea ice, glaciers, permafrost and the two ice sheets in Greenland and Antarctica are essential climate variables (ECVs) in the Global
Climate Observing System (GCOS, 2003, 2009) that has been established in support of the United Nations Framework Convention
on Climate Change (UNFCCC). Cryosphere components are interconnected in various ways. Specific aspects of change detection,
attribution to causes and impacts are summarized below.

With its large area covered, small volume and correspondingly high spatio-temporal variability, snow is an unstable interface
between the atmo-, litho-, cryo-, hydro-, and biosphere. Its albedo effect on the global radiation balance and its role in the water
cycle relate snow cover to the climate system via important feedbacks and interactions (Barry et al., 2007). Observed trends
(decreasing spring snow extent in the Northern Hemisphere) point to some effects from warming but they remain vague as changes
in precipitation also cause changes in snow cover. Attribution to impacts concerns many parts of the climate system—especially
cryospheric components and the water cycle. For glaciers (including ice masses with predominant radial flow called ice caps), snow
is fundamentally important in that it essentially influences the mass exchange as well as the energy fluxes via snow cover and albedo
effects.

Due to its high albedo and its influence on the formation of oceanic deep water, sea ice relates to the climate system with
important interactions and feedbacks (Gerland et al., 2007). The continued decrease in Arctic sea-ice extent, age, and thickness
(Stroeve and Notz, 2018), and especially the shrinking to new record low extents in 2007 and 2012-13, is probably the most
dramatic recent change in the Earth'’s cryosphere, taking place at a rate that clearly exceeds the range of previous model simulations
(Dorn et al., 2008; UNEP, 2009). Sea ice around Antarctica, however, shows little change—a fact that is still not fully understood.
Continued sea-ice monitoring is a key element of detection strategies for global climate change. Attribution to causes is complex as
the development is influenced by higher air and ocean temperatures and by particular ocean circulation patterns or wind stress. The
development of the Arctic sea ice is of great concern, because attribution with respect to impacts involves aspects of highest global
importance such as albedo and ocean circulation as well as navigation through the northwest and northeast passages. High-arctic
glaciers can have direct contact with sea ice (Fig. 4) and become exposed to stronger humidity advection with decreasing sea-ice
extent in summer.

The two continental ice sheets are important drivers in the climate system. Slow changes in their mass balance and flow are
complex and relate to centennial and millennial timescales, making attribution to causes of shorter trends difficult. Modern
altimetry and gravimetry technologies are now strongly improving detection possibilities at shorter (decadal) timescales (Bentley
et al., 2007; Tedesco, 2015). This is especially important in view of possible ice-sheet instabilities from recent flow acceleration of
outlet glaciers with beds far below sea level (Rignot et al., 2002; Vaughan and Arthern, 2007; Steiger et al., 2018; Vieli, 2020) and
corresponding surface drawdown of large catchment areas (Fig. 5). Attribution to causes of impacts primarily relates to long-term
sea-level rise and changes in the global atmosphere/ocean circulation (Allison et al., 2020). Probably, the clearest and most
significant cryospheric information on past climate change is from ice core analysis in Antarctica and Greenland (e.g., EPICA
Community Members, 2004; Masson-Delmotte et al., 2010; Bereiter et al., 2015). Especially high-resolution greenhouse gas and
isotopic ice core records reaching 10°-10° years back in time are fundamental for detection and documentation of past climatic

Table 1 Components of the cryosphere.

Component Area (10° km?) Volume (10° km®) Potential sea-level rise (cm)
Snow on land (Northern Hemisphere) 1.9-45.2 <0.01 0.1-1

Sea ice (Arctic and Antarctic) 19-27 0.019-0.025 0

Ice sheets

Greenland 1.7 29 730

Antarctica 12.3 24.7 5660

Glaciers and ice caps 0.51-0.54 0.05-0.13 15-37

Permafrost 22.8 4.5 7

River and lake ice <1.0 - -

The exact numbers are subject to continuous change as reported in the IPCC reports (for instance, IPCC SROCC, 2019).
Source: Reproduced from UNEP (2007) Global Outlook for Ice & Snow. Norway: UNEP/GRID-Arendal.
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Fig. 4 Glacier on Ellesmere Island in contact with sea ice. Photograph by W. Haeberli, 2008.

Fig. 5 Retreat of Jakobshavn Isbre, Greenland west coast since 1850. The total backward displacement of the calving front during the twentieth century is
comparable to the distance of retreat between 2001 and 2006, corresponding to an acceleration of the retreat rate by about a factor of 20. As the flow velocity
roughly doubled around the turn of the millennium, the rate of ice discharge during this time interval increased by about a factor of 40 as compared to the average
historical rate. The fjord west of the present glacial margin is filled with icebergs from calving events. Background map is a Landsat-8 image from August 16, 2016
(from the U.S. Geological Survey). From Steiger N, Nisancioglu KH, Akesson H, de Fleurian B, and Nick FM (2018) Simulated retreat of Jakobshavn Isbrae since the
Little Ice Age controlled by geometry. The Cryosphere 12: 2249-2266. doi: 10.5194/tc-12-2249-2018, with permission.
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changes and for attribution of corresponding causes. These records clearly show increases to the extraordinary level of modern
greenhouse gas concentrations and contain quantitative evidence from the past about natural variability and ranges as well as about
the magnitude of possible anthropogenic effects. Borehole temperature profiles in cold firn and ice provide independent checks on
records of isotopic temperature proxies and reflect changes in atmospheric (annual) temperatures. If more systematically monitored
(change of temperature at depth with time) and analyzed (numerical modeling of heat diffusion and flow effects), the temperature
profiles would be important for detecting and attributing atmospheric warming as compared to conditions over very long time
periods in the past (de Robin, 1983).

Transitional characteristics to glaciers exist with respect to outlet glaciers and ice shelves. The rapid disintegration and collapse of
ice shelves in the Antarctic Peninsula (Scambos et al., 2000; Wellner et al., 2019) and the almost complete disappearance of the
Canadian ice shelves on Ellesmere Island (Copland et al., 2007) are well-documented changes. The anticipated progression of ice-
shelf collapse toward colder parts of Antarctica forms a key element of cryospheric detection strategies. Complex air/ocean/ice
interactions make attribution to exact causes difficult, but warming as a general cause appears to be evident. Attribution to impacts
concerns high-latitude marine ecosystems, the stability of outlet glaciers and ice streams in Antarctica, and, with this indirectly long-
term sea level.

Perennially frozen ground or permafrost at high latitudes is a significant feedback element in the climate system (e.g., CH,).
Important information on rising ground temperatures in permafrost at high latitudes and high altitudes (mountain permafrost) as
compared to historical conditions can be derived from changing subsurface temperatures and from heat flow anomalies in deep
boreholes (Harris et al., 2009; Romanovsky et al., 2010; Biskaborn et al., 2019). Observed changes in active layer thickness and
measurements of subsidence from thaw settlement in ice-rich materials so far still show rather weak trends. In both cases,
attribution to climatic causes is complicated by multiple interactions of frozen ground with vegetation, snow, and surface water.
Attribution to impacts involves large terrestrial ecosystems and living conditions (water resources and infrastructure) at high
latitudes and slope stability and soil humidity at high altitudes (Romanovsky et al., 2007). Permafrost is intimately related to
polythermal and cold glaciers in regions with dry continental-type climatic conditions (Fig. 6), whereas temperate glaciers
penetrating down to non-frozen areas predominate in humid-maritime regions.

The duration of river and lake ice is an indicator of winter and lowland conditions, complementing summer/altitude evidence
from glaciers in mountains. Shortening of the season with lake and river ice in extensive northern regions can be generally attributed
to winter-warming effects. Highly complex influences from short-term weather patterns (wind and precipitation/snow fall) and
aquatic conditions (water circulation, groundwater influx, lake turnover, etc.) make attribution to exact causes and modeling
difficult. Trafficability and ecosystem evolution are primary aspects of attribution to impacts (Prowse et al., 2007).

The shrinking of glaciers is among the clearest and most easily understood evidence in nature for rapid climate change at a global
scale and, hence, constitutes a key element of early detection strategies for global climate change. As explained in further detail below,
mass-balance monitoring shows a striking acceleration of loss rates since the 1980s (Kaser et al., 2006; Zemp et al., 2009, 2015).
Glacier extent (length and area) may have reached warm minimum limits of pre-industrial (Holocene) variability ranges (Solomina
et al., 2008) and is far out of equilibrium conditions at many mid- and low-latitude sites. Attribution to atmospheric (summer)
temperature rise as a primary cause is relatively safe as air temperature not only relates to all energy-balance factors but also to rain/
snowfall and hence accumulation. Complications are due to variable englacial temperature conditions (cold, polythermal, and
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Fig. 6 Scheme of glacier and permafrost occurrence as a function of mean annual air temperature and annual precipitation. Reproduced from UNEP (2007) Global
Outlook for Ice & Snow. Norway: UNEP/GRID-Arendal.



The Response of Glaciers to Climate Change: Observations and Impacts 7

temperate firn/ice) and strong feedbacks (positive: albedo and elevation/mass balance; negative: adjustment of geometry and debris
cover). As discussed below in more detail, attribution to impacts involves landscape changes, runoff seasonality, hazards (lake
outburst floods and slope instability), and erosion/sedimentation cascades (debris flows, river load, lake filling, etc.).

Rather surprisingly, important climatic information has been generated from tiny cold/old ice patches/miniature ice caps not
usually described in cryosphere overviews (Fig. 7; Farnell et al., 2004; Haeberli et al., 2004; Reckin, 2013). Dating of organic matter
from disappearing ice patches with low-flow to even non-flow conditions reveals that ice (and summer air temperature?) conditions
without precedence during many past millennia have now been reached in subarctic and alpine regions (Miller et al., 2013).

3 Long-term worldwide glacier observation

Fluctuations of glaciers have been systematically observed for more than a century in various parts of the world (Haeberli et al.,
1998; WGMS, 2008). The early establishment of a coordinated worldwide program of data collection and dissemination greatly
facilitated documentation of observed glacier changes. The evolution of this program was not without intermittent crises but
nevertheless remarkably progressed over time, integrating simple observations and sophisticated scientific approaches.

3.1 Historical background

The internationally coordinated collection of information about ongoing glacier changes was initiated in 1894 with the foundation
of the International Glacier Commission at the 6th International Geological Congress in Zurich, Switzerland. It was hoped at that
time that the long-term observation of glaciers would provide answers to questions about global uniformity and terrestrial or
extraterrestrial forcing of past, ongoing, and potential future climate and glacier changes (Forel, 1895). The monitoring strategy
consisted of regular surveys at selected glacier tongues (terminus position, length change, and advance or retreat of glaciers) and also
included indigenous knowledge about earlier glacier stages collected by scientists through communication with the mountain
people.
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Fig. 7 Radiocarbon dates ordered according to age from organic remains in still existing remains of now rapidly shrinking if not vanishing perennial snowbanks
(ice patches and miniature ice caps) in Southwestern Yukon, Canada. The oldest ages indicate that such ice patches have existed during the past about 8000 years.
Reproduced from Farnell R, Hare GP, Blake E, Bowyer V, Schweger C, Greer S, and Gotthardt R (2004) Multidisciplinary investigations of alpine ice patches in
Southwest Yukon, Canada: Paleo-environmental and paleobiological investigations. Arctic 57 (3): 247-259, with permission from Canada Artic Journal.
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During the twentieth century, the evolution of the international glacier monitoring was marked by five distinct phases. The
first phase of international glacier observation, around the turn of the century, was characterized by the search for regular
oscillations in the climate/glacier-system, as is illustrated by the titles of the corresponding reports (“Les variations périodiques
des glaciers”; Forel, 1895). The second phase spans the two world wars and the period of economic crisis between them, when
glacier observations were reduced to a minimum. As a consequence, a major glacier advance phase in the 1920s along with the
following strong shrinkage in the 1930s and 1940s passed virtually unnoticed in the scientific literature. The third phase saw the
reorganization of the international network under the umbrella of the UNESCO. In 1967, the Permanent Service on the
Fluctuations of Glaciers (PSFG) was established. This resulted in a series of reports in 5-year intervals, the Fluctuations of
Glaciers. Mass-balance data from various countries, including the Soviet Union, the United States, and Canada, were included in
these reports for the first time, forming the essential link between climate fluctuations and glacier length changes. Length
variation data from the United States, the Soviet Union, and other countries completed the corresponding records from the
Alps, Scandinavia, and Iceland. The fourth phase of international glacier monitoring started around the 1970s. A World Glacier
Inventory (WGI) was initiated to become a snapshot of ice conditions on the Earth during the second half of the twentieth
century and a temporary technical secretariat (TTS/WGI) began operations in 1976. Detailed and preliminary regional invento-
ries were compiled all over the world to update earlier compilations (Field, 1975; Mercer, 1967) and to form a modern statistical
basis of global glacier distribution. The fifth phase finally saw the start of the World Glacier Monitoring Service (WGMS),
combining and integrating PSFG and TTS/WGI, and developing modern comprehensive observational strategies including results
from remote sensing.

3.2 Current glacier monitoring strategy

Today, glacier monitoring is organized in a tiered strategy to optimally combine detailed field-based studies on individual glaciers
for process understanding (e.g., energy balance and run-off ) with measurements of index variables at several glaciers (glaciological
mass balance and length changes) and remote sensing information to obtain complete spatial coverage at decadal time steps (e.g.,
glacier inventories, geodetic mass balance). The four relevant Tiers are, in detail (cf. Haeberli et al., 2000, 2007):

® Extensive glacier mass and energy balance studies within major climatic zones for improved process understanding and for
calibrating numerical models.

® Regional glacier mass changes within major mountain systems, observed with a limited number of strategically selected stakes/
pits combined with geodetic mapping at about decadal intervals for calibration (e.g., Zemp et al., 2013; Huss et al., 2015).

® Long-term observations of glacier length changes and, especially, remotely sensed volume changes for large glacier samples
within major mountain ranges to assess the representativeness of glaciological mass-balance series (Zemp et al., 2020).

® Glacier inventories repeated at time intervals of a few decades using satellite remote sensing in combination with digital
elevation models (DEMs) to enable global coverage (Paul et al., 2009) and detailed regional assessments.

Detailed process-oriented long-term mass/energy-balance and ice flow studies, for example at Storglacidren in northern Sweden,
Vernagtferner in the eastern Alps, or Tuyuksu Glacier in the Kazakh Tien Shan have formed the basis for a multitude of model
studies (cf. early overviews by Oerlemans (2001, 2008) ). Annual measurements on more than 100 glaciers worldwide reflect
regional patterns of mass change. A sub-sample of 41 reference glaciers provides continuous information on mass change rates
(Fig. 8). Attempts are made to fill gaps in spatial coverage such as in the Himalayas (Bolch et al., 2012; Azam et al., 2018) or to
re-establish long observational series, which were discontinued in the 1990s (e.g., Barandun et al., 2018). Front variations of
about 500 glaciers are currently measured each year in several regions of the world, serving as a key to reconstruct past climatic
fluctuations using dynamic fitting of glacier flow models (e.g., Leclercq and Oerlemans, 2012) or simpler concepts of mass
conservation (Hoelzle et al., 2003). The collected data is compiled and published by WGMS in the Global Glacier Change
Bulletin and also reported annually in electronic form (WGMS, 2019, and earlier versions). Updating glacier inventories requires
continuous upgrading and analyses of existing and newly available data and is now organized as a large community effort
(Fig. 9). About 215,000 glaciers have been catalogued in the latest version (v6) of the so-called Randolph Glacier Inventory (RGI)
described by Pfeffer et al. (2014) and documented by the RGI Consortium (2017). Recently, Gdrtner-Roer et al. (2019) assessed
the status of national implementations of the international monitoring strategy. They developed a standardized procedure to
evaluate existing glacier data from international data repositories (as of 2015) for all glacierized countries and regions. This is the
first time baseline data on glacier distribution and change have been systematically compiled and evaluated. By this process,
observational gaps and uncertainties are revealed to demonstrate their influence on related decisions at the national, regional,
and sectorial (e.g., agricultural economy, energy management) levels, as well as to strengthen and develop future efforts in glacier
monitoring.

The observing strategy is implemented in the Global Terrestrial Network for Glaciers (GTN-G) that has been established as
part of the Global Terrestrial/Climate Observing Systems (GTOS/GCOS). It is especially designed to provide quantitative,
understandable, and policy-relevant information related to questions about process understanding, change detection, model
validation, and environmental impacts in a trans-disciplinary knowledge transfer to the scientific community as well as to policy
makers, the media, and the public. The network is jointly operated by three operational bodies in glacier monitoring, which are
the WGMS (mainly in situ observations), the National Snow and Ice Data Center (NSIDC: mainly data management), and the
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Fig. 8 Average annual (A) and cumulative (B) glacier mass balances from 30 reference glaciers in nine mountain ranges. The blue line in (B) is the mean value
calculated for all reported mass balances irrespective of the length of the time series. Reproduced from WGMS website 2020 (http://www.wgms.ch/), free download.

Global Land Ice Measurements from Space initiative (GLIMS: mainly satellite observations) in coordination with the Interna-
tional Association of Cryospheric Sciences (IACS), an association of the International Union of Geodesy and Geophysics (IUGG).

The online service of GTN-G (gtn-g.org) provides fast access to regularly updated information on glacier inventory data. The RGI
version 6.0 (RGI Consortium, 2017) provides a global, almost complete inventory relating to around the year 2000, while the
GLIMS database additionally hosts multi-temporal glacier outlines for many regions. The Fluctuations of Glaciers (FoG) database of
the WGMS (2020) currently stores >46,000 front variations from 2500 glaciers, >7000 glaciological mass balances from 460
glaciers, and >90,000 geodetic mass changes from >27,000 glaciers. In addition, NSIDC hosts a collection of >24,000 glacier
photographs (NSIDC 2002, 2019). Overview reports were published in 2008 in cooperation with UNEP (WGMS, 2008) and in
2015 (Zemp et al., 2015) and are periodically updated in the Global Glacier Change Bulletin series of the WGMS (WGMS, 2020,
and earlier issues).
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Sentinel 2 2.5 km

Fig.9 Sentinel-2 image (false color infrared) of Luigi Island in the Franz-Josef-Land Archipelago of the Russian Arctic acquired on September 12, 2016. Nearly all
snow (white) melted in that year, the surrounding ocean (black) is ice-free, and the bare ice (blueish) is subject to massive surface melt. Red outlines show glacier
extents and ice divides from the RGl, yellow lines refer to the 2016 Sentinel-2 scene and the new ArcticDEM (shifting the ice divides to the correct place). Image:
Copernicus Sentinel data 2016.

3.3 Data interpretation

Regional glacier mass changes within major mountain systems measured by reduced stake networks provide information on
accumulation, ablation, mass balance, and mass turnover at seasonal to annual time resolution. In the same way as detailed mass-
balance measurements with extended stake/pit networks, they need careful calibration by repeated precision mapping, which allows
for exact determination of volume/mass changes integrated over the entire glacier (Andreassen, 1999; Thibert and Vincent, 2009;
Zemp et al., 2010, 2013).

Statistical analysis indicates that spatial correlations of short-term mass-balance measurements typically have a critical range of
about 500 km (Cogley and Adams, 1998; Rabus and Echelmeyer, 1998) but tend to increase markedly with increased length of time
period under consideration as it applies to meteorological variables in general (e.g., Vincent et al., 2017). Decadal to secular trends
are comparable beyond the scale of individual mountain ranges with continentality of the climate being the main classifying factor
(Letréguilly and Reynaud, 1990) besides individual hypsometric effects (Furbish and Andrews, 1984; Tangborn et al., 1990).

Carefully calibrated modeling backwards into the final phase of the Little Ice Age confirms large variability even within short
distances (Huss et al., 2008, 2010) which is still not well understood from weakly correlated individual topographic influences
(Fig. 10). Over such extended timescales (about 150 years), decreasing glacier area accompanying long time series of mass loss
appears to have compensated about 50% of the mass loss, which would have taken place with constant unchanged area (Nemec
et al., 2009; Paul, 2010; Huss et al., 2012).

Extrapolation of available mass-balance measurements has been used in various studies for estimating annual rates of sea-level
rise due to glacier melt (e.g., Kaser et al., 2006; Bahr et al., 2009), increasingly combined with glacier volume changes derived from
DEM-differencing over large individual glacierized regions (e.g., Berthier et al., 2010; Gardelle et al., 2013; Brun et al., 2017; Braun
et al., 2019; Shean et al., 2020) and also globally (Zemp et al., 2019). The growing difference from equilibrium conditions must
thereby be considered. The assumption that the mass balance of a glacier is fairly well decoupled from the dynamic response of the
glacier and primarily constitutes a direct signal of climatic conditions at the site is reasonable only for relatively steep glaciers with a
short response time and that remain relatively close to steady state or for slow climate forcing. With accelerating climate change,
various feedbacks come into play. Size effects (small/large glaciers), thermal aspects (cold/temperate firn areas), positive feedbacks
(albedo and surface elevation), and process changes (rock outcrops/collapse/lake formation) are especially critical.

Size effects concern the different response characteristics of small and often more steeply inclined glaciers with short response
times and large, mostly flat glaciers with long response times. As the latter cannot retreat quickly enough and lose exposed areas
through time, rapid forcing leads to positive feedbacks related to changes in surface elevation (mass-balance/altitude feedback), which
are cumulative and—after some time—tend to completely dominate thickness change (Raymond et al., 2005) and to induce
runaway effects (down-wasting and collapse). The related massive surface elevation changes are easily visible from DEM differenc-
ing (e.g., Larsen et al., 2007; Paul and Haeberli, 2008; Melkonian et al., 2016; Falaschi et al., 2017). As a consequence, even under
comparable climatic conditions, results from mass-balance measurements on small glaciers (Cogley and Adams, 1998; Dyurgerov
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Fig. 10  Correlation of temporally homogenized geodetic mass balance 1980-2010 and several geometrical indices for the glaciers in the Swiss Alps. (A) Average
area 1973-2010, (B) median elevation at the beginning of the considered time interval, (C) surface slope averaged over the lowermost 25% of the glacier and
(D) mean aspect; red triangles show mean values for 5% quantiles of the data. From Fischer M, Huss M and Hoelzle M (2015b) Surface elevation and mass changes
of all Swiss glaciers 1980-2010. The Cryosphere 9: 525-540.

and Meier, 1997; Kaser et al., 2006) may not be extrapolated in a simple straightforward way to large glaciers. This is especially
important with respect to estimates of sea-level rise caused by the melting of the largest glaciers on Earth.

Extrapolation in time is also made difficult because of process changes. For instance, cold firn areas in regions with a dry-
continental climate (cf. Zemp et al., 2007) or at high altitudes (Suter et al., 2001; Vincent et al., 2007) may warm, become
temperate, start losing mass from large parts of their accumulation area and, hence, strongly increase their mass-balance sensitivity
with respect to atmospheric warming. Moreover, many heavily glacierized regions in the Arctic can be classified as ice caps or ice
fields with a limited altitudinal range. The latter implies that they could quickly melt once a critical threshold in the climate is passed
(Nesje et al., 2008; Fisher et al., 2012). As an additional effect, some large glaciers terminate in deep ocean water or in local lakes,
causing calving instability or even (partial) flotation and dynamic thinning (Fig. 11; Meier et al., 2007), but do not contribute to
global sea-level rise with their parts below the water level (Haeberli and Linsbauer, 2013; Loriaux and Casassa, 2013).

Fluctuations in glacier length are easily determined but involve the full complexity of dynamic glacier response to climate
change. The cumulative advance/retreat of glacier margins indeed represents a delayed, filtered, and enhanced signal of climate
forcing. Considered over time periods corresponding to the dynamic response time for full adjustment to changed climatic
conditions, cumulative length changes can be quantitatively related to the mean mass balance (Haeberli and Hoelzle, 1995;
Hoelzle et al., 2003). They are the key to quantitative comparison with past glacier changes. For a long time these changes
constituted the only possibility for assessing how representative are the more direct signals from the few measured mass balances.

Special conditions, which limit possibilities of climatic interpretation, are related to features of downwasting, collapse (as treated
later), extraordinary flow conditions (calving instability and surges; Truffer et al., 2020, Vieli, 2020), heavy debris cover (enhancing
the delay in response), avalanching, or accelerated retreat induced by lake formation (Yde and Paasche, 2010). Taku glacier, for
instance, is one of the relatively few glaciers on Earth, which continued to grow and advance for decades (Fig. 12). This is due to the
fact that the glacier is in the advance stage of its calving-instability cycle after a drastic retreat phase (Truffer et al., 2009). A thick
debris cover on glacier tongues can greatly reduce ablation near the terminus and thereby multiply the dynamic response time,
which is inversely proportional to the balance at the terminus. Heavily debris-covered glaciers can, therefore, remain in extended
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Fig. 11  Sawyer Glacier, Stikine Ice Field, Southern Alaska. The glacier is in the rapid retreat phase of its calving instability cycle. It has shortened by about 35 km
since its maximum extent reached during the Little Ice Age. Photograph by Haeberli W (2007) Changing views of changing glaciers. In: Orlove B, Wiegandt E,
Luckman BH (eds.) Darkening Peaks — Glacial Retreat, Science and Society, pp. 23—-32. Berkeley, CA: University of California Press.

Fig. 12 Taku Glacier, Juneau Ice Field, Southern Alaska. The glacier is in the advance stage of its calving instability cycle, advancing with its front on a delta-
moraine pushed through the fjord. Photograph by Haeberli W (2007) Changing views of changing glaciers. In: Orlove B, Wiegandt E, Luckman BH (eds.) Darkening
Peaks — Glacial Retreat, Science and Society, pp. 23—-32. Berkeley, CA: University of California Press.

positions for many decades if not centuries, thereby constricting the flow of up-glacier ice (Fig. 13; Schmidt and Nusser, 2009;
Scherler et al., 2011).

Quantitative information from detailed glacier inventories compiled during the second half of the twentieth century mainly
concerns four parameters: highest and lowest elevations, area, and length. From these four basic parameters and some additional
topographic and climatic data, important characteristics of numerous glaciers in entire mountain ranges can be derived. Based on a
corresponding parametrization scheme, Haeberli and Hoelzle (1995) analyzed the entire sample of glaciers >0.2 km? of the
European Alps around 1975 with respect to several factors. The factors included the frequency distribution of surface area
(maximum occurrence: 0-5 km?), mean altitude or mid-range elevation (2800-3000 m a.s.1.) and overall slope (20-25 degrees),
mean basal shear stress (40-80 kPa), slope- and stress-dependent mean ice thickness (a few tens of meters), mean flow velocity
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Fig. 13 Repeat terrestrial photography of the Raikot Glacier terminus, Nanga Parbat, northern Pakistan, between July 1934 and August 2006. Reproduced from
Schmidt S and Niisser M (2009) Fluctuations of Raikot Glacier during the past 70 years: A case study from the Nanga Parbat massif, Northern Pakistan. Journal of
Glaciology 55(194): 949-959.

(0-30 m year™'), characteristic reaction time as the delay of tongue length-change onset with respect to marked changes in mass
balance (10-20 years), typical slope-dependent dynamic response time for full adjustment to changed mass-balance conditions
(20-40 years; cf. Zekollari et al.,, 2020), and relaxation time as the difference between response and reaction time (often
10-20 years), as well as probable occurrence of temperate, polythermal, and cold ice as well as corresponding altitudinal relations
with periglacial permafrost. Such numbers immediately make it clear that the great majority of glaciers in mountain ranges
comparable with the European Alps are small, steep, thin, close to (or at) melting temperature and, hence, highly vulnerable to
even small increases in atmospheric energy content (Hoelzle et al., 2007; Raper and Braithwaite, 2009). Together with simple
approaches based on mass conservation and step changes between equilibrium conditions (i.e., no transient effects) inventory data
were also used to approximate future glacier development (e.g., Haeberli and Hoelzle, 1995; Paul et al., 2007a; Zemp et al., 2007).
The resulting information remains realistic over longer time periods (dynamic response time) and with smaller glaciers.

3.4 Modern technologies

Remote sensing at various scales (satellite imagery, aerophotogrammetry) and GIS technologies can now be combined with digital
terrain information (Kdib et al., 2002; Paul et al.,, 2002; Kargel et al., 2005; Andreassen et al., 2008; Kddb, 2008; Paul and
Andreassen, 2009; Bolch et al., 2010). Furthermore, new technologies such as airborne laser altimetry in combination with
kinematic GPS (Abdalati et al., 2004; Arendt et al., 2002, 2006; Meier et al., 2007), laser scanning (Geist et al., 2003; Fischer
et al., 2015a,b), and space-borne DEMs from sensors such as SRTM, ASTER, ALOS, TanDEM-X, and SPOT or very high resolution
sensors such as Quickbird and WorldView (ArcticDEM, High Mountain Asia DEM) lead to new dimensions for glacier monitoring
(Fig. 14). Spectacular results have already been obtained from DEM differencing (after careful co-registration of both DEMs),
reflecting changes in surface elevation at pixel resolution for large regions (e.g., Berthier et al., 2004, 2010; Gardelle et al., 2013;
Larsen et al., 2007; Bolch et al., 2008; Rignot et al., 2003). In fact, differencing the SRTM DEM (Rabus et al., 2003) with regionally
available DEMs from earlier aerial photography introduced quantitative information on volume/mass changes during the past
decades for hundreds and thousands of large and small glaciers as well as on their individual parts. With these new techniques, it is
now possible for the first time to directly investigate how representative the thickness changes of the glaciers in the mass-balance
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Fig. 14 Specific glacier mass balance (m w.e. a~") in High Mountain Asia (centered over western China) over the period 2000-2018, aggregated over 55 km grid
cells. The size of the circles is proportional to the total glacierized area. Approximate international borders from Natural Earth 1:10 M products are plotted for
reference. Taken from Shean DE, Bhushan S, Montesano P, Rounce DR, Arendt A, and Osmanoglu B (2020) A systematic, regional assessment of high mountain asia
glacier mass balance. Frontiers in Earth Science 7: 363. doi: 10.3389/feart.2019.00363, with permission.

network compare with all glaciers of entire mountain chains (Paul and Haeberli, 2008), what is the variability in space and how
variability depends on factors such as size, slope, exposure, altitudinal extent or (micro-) climatic conditions of individual glaciers.
Relative differences between long-term volume or mass changes of individual glaciers can be transformed into correction factors for
fitting mass-balance time series with transitions from replaced to replacing glaciers.

At the beginning of space-borne geodetic mass balance calculation, several studies used the SRTM DEM acquired in February
2000 (Rabus et al., 2003) and subtracted regionally available national DEMs from earlier aerial photography and other elevation
sources (e.g., Rignot et al., 2003; Surazakov and Aizen, 2006; Larsen et al., 2007; Schiefer et al., 2007; Paul and Haeberli, 2008).
Later on, the SRTM DEM was subtracted from more recent DEMs derived from satellite data such as SPOT (Gardelle et al., 2013) or
TanDEM-X (e.g., Vijay and Braun, 2016; Li et al., 2017; Braun et al., 2019; Jaber et al., 2019). Outside the coverage of SRTM, SPOT
and ASTER DEMs have also been subtracted from historic national DEMs to obtain elevation changes over longer time periods (e.g.,
Berthier et al., 2010). Recently, DEM generation from optical satellite stereo imagery was automatized (Shean et al., 2016) and
applied to time series of ASTER stereo imagery to obtain glacier elevation changes as a robust trend from all DEMs available rather
than only two (e.g., Brun et al.,, 2017; Dussaillant et al., 2019). As a temporal extension back in time historic satellite images from
the Keyhole Mission (Corona and Hexagon) were also used to follow the long-term development of glacier elevation and mass
changes, in particular in High Mountain Asia (e.g., Bolch et al., 2008, 2017; Holzer et al., 2015; Maurer et al., 2016, 2019; Goerlich
etal, 2017; Zhou et al., 2017, 2018).

The SRTM DEM was also used in combination with space-borne laser altimetry data from the ICESat GLAS sensor (Zwally et al.,
2002) to obtain glacier elevation changes from regional (e.g., Kdib et al,, 2012) to global (e.g., Gardner et al., 2013) scales.
Additional data was also generated by a combination with mass change information derived from the GRACE gravimetry sensor
(Wahr et al., 2004), or from GRACE alone (Jacob et al., 2012; Wouters et al., 2019). On a more regional scale, ICESat data alone
have been used to determine glacier elevation changes (e.g., Moholdt et al., 2010, 2012; Bolch et al., 2013; Neckel et al., 2014).
A comprehensive overview of LIDAR studies that include smaller scales and the two ice sheets is provided by Bhardwaj et al. (2016).
The major issue when using ICESat data is the “correct” spatial extrapolation of the partly sparse point data to all altitudes with
glacier coverage and consideration of the possibly different changes with altitude for glacier surfaces that are not covered or
complex, for instance due to debris cover or surge behavior (Ke et al., 2015). For large and flat ice caps Cryosat-2 data also have been
used to derive surface-elevation changes that cover the time period after ICESat and that provide a much higher data density (Gray
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et al., 2015; Foresta et al., 2016; Ciraci et al., 2018). However, as for the SRTM and TanDEM-X DEMs, the penetration of radar
sensors into dry snow and firn can be very large and has to be corrected to the extent possible (e.g., von Albedyll et al., 2018).

Towards IPCC SROCC (2019), there have been further considerable improvements with respect to available datasets. Geodetic
volume change assessments for entire mountain ranges have become possible thanks to recently available and comparably accurate
DEMs from very high-resolution sensors (Shean et al., 2020). At the same time, new space-borne altimetry (ICESat-2) and
gravimetry (GRACE-FO) missions are in orbit and about to release data products to the science community. This will open new
opportunities for regional evaluations of results from different methods (e.g., Moholdt et al., 2012; Brun et al., 2017; Braun et al.,
2019; Huber et al., 2020) as well as for truly global assessments of glacier mass changes and related contributions to sea-level rise
(Wouters et al., 2019; Zemp et al., 2019). Together with in situ measurements of glacier mass balance, satellite-derived quantitative
information about glaciers in entire mountain ranges is becoming the core of future-oriented worldwide glacier monitoring.
However, the glacier research and monitoring community is facing new challenges related to data size, formats, and availability
as well as by new questions with regard to best practices for data processing chains and for related uncertainty assessments.

New programs of collaboration with advanced observational technologies (remote sensing and geoinformatics) became more
and more involved in glacier monitoring at the beginning of the 21st century (e.g., Paul et al., 2002; Bishop et al., 2004; Kargel et al.,
2005) and new detailed glacier inventories were compiled in regions previously not covered in detail (Fig. 9) or, for comparison and
change assessment, as a repetition of earlier inventories (e.g., Paul et al., 2004). This task was greatly facilitated by the launch of the
Terra Satellite with its sensor ASTER and the GLIMS initiative (Kieffer et al., 2000). Later on, free access to the entire archive of
(already orthorectified) Landsat imagery (Wulder et al., 2012) and the Shuttle Radar Topography Mission (SRTM) paved the way for
compiling glacier inventories (including topographic information for each glacier) in various parts of the world (Kargel et al., 2014
and Chapters therein), for determination of glacier changes globally, and for numerous applications using GIS technologies and
largely automated data processing (Paul et al., 2009; Racoviteanu et al., 2009; Kienholz et al., 2015). Today, the Sentinel satellites
from the Copernicus programme have revolutionized space-borne glacier monitoring by providing multispectral images at 10 m
resolution from nearly all parts of the world at 5-day intervals. This gives a higher chance for cloud-free image acquisition and allows
rapid processes such as glacier surges in the Arctic to be followed with unprecedented detail (Willis et al., 2018, Fig. 15). Owing to
the free data access policy of the GLIMS glacier database and a special effort of the glacier mapping community in support of IPCC
AR5, an initial version of a globally complete dataset of vector outlines from more than 200,000 glaciers (named the Randolph
Glacier Inventory, RGI) was published (Pfeffer et al., 2014) and has been improved several times (RGI Consortium, 2017).

The new dataset, in combination with DEMs, allowed for numerous global-scale applications that would have been unthinkable
just a few years before. This includes automated calculation of glacier drainage divides (e.g., Kienholz et al., 2013) and center lines
for all glaciers worldwide (Machguth and Huss, 2014), as well as glacier-specific elevation and mass changes as described above and
detailed below. In addition, slope- and stress-dependent modeling of ice thickness distribution became possible at pixel resolution
(e.g., Huss and Farinotti, 2012; Linsbauer et al., 2012; Farinotti et al., 2019a), providing digital terrain models without glaciers and
enabling detailed modeling of future glacier evolution and related contributions to sea-level rise (e.g., Marzeion et al., 2012; Huss
and Hock, 2015; Hock et al., 2019) amongst other hydrological applications from regional to global scales (Bliss et al., 2014;
Linsbauer et al., 2016; Huss and Hock, 2018; Farinotti et al., 2019b).

The development of distributed energy and mass balance models has seen dramatic progress over the past two decades as well.
The comprehensive long-term investigations of the energy and mass balance at a small sample of mountain glaciers together with
dedicated field campaigns (e.g., Oerlemans, 2010) enabled the development of realistic numerical models considering the

Fig. 15 Sentinel-2 image of the surging Vavilov Ice Cap on Severnaya Zemlya in the Russian Arctic acquired on September 12, 2017. At its 10 m resolution
individual crevasses are resolved and the dynamic evolution of the surge can be followed in unprecedented detail. Image: Copernicus Sentinel data 2017.
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dominant physical processes. Simple statistical relations between meteorological parameters and measured mass balances
(Reynaud and Dobrowolski, 1998) had already pointed to the strong dominance of (summer) air temperature with its influence
on all energy- and mass-balance parameters (cf. Ohmura, 2001; Braithwaite et al., 2003; Arendt et al., 2009), including accumu-
lation via the solid/liquid threshold temperature. The related simplified degree-day models (e.g., Braithwaite, 1995; Hock, 2005)
then increasingly led to the treatment of the full energy and mass balance (e.g., Oerlemans, 1991, 2001; Klok and Oerlemans, 2002;
Arnold et al., 2006; Anslow et al., 2008), albeit for individual glaciers only. Such models at various degrees of sophistication and
complexity—even though almost exclusively for assumed temperate firn and ice—are now widely used but still need strong tuning
due to highly uncertain assumptions about complex spatial patterns of snowfall and snow redistribution by wind and avalanches
(e.g., Machguth et al., 2006a; Dadic et al., 2010; Sold et al., 2013; McGrath et al., 2015), among others (Machguth et al., 2008).
Application of mass balance models at the regional (e.g., Machguth et al., 2006b, 2009; Paul et al., 2008) or global scale is thus
subject to simplifications and parametrizations (e.g., using a degree-day approach instead of the energy balance) and requires
careful calibration/validation with available time series of measured glacier mass balances (e.g., Giesen and Oerlemans, 2013;
Marzeion et al., 2012; Radi¢ and Hock, 2014).

Combined mass-balance and flow models have become important instruments to study past and possible future glacier
evolution (e.g., Zuo and Oerlemans, 1997; Oerlemans et al., 1998; Sugiyama et al., 2007; Jouvet et al., 2009; Zekollari et al.,
2014) or to help with interpreting past glacier changes with respect to global warming and sea-level rise (Oerlemans, 2005;
Oerlemans et al., 2007; Fig. 16). Like the driving mass-balance models, their parameters also need heavy tuning (e.g., for ice
deformation and basal sliding, or bed geometry). Despite remaining difficulties, such models reflect an advanced quantitative
understanding of past and present glacier evolution and enable realistic sensitivity studies to be undertaken with respect to potential
impacts on glaciers from continued energy increase in the climate system.

Recently, the Global Glacier Evolution Model GloGEM by Huss and Hock (2015) has been extended with a simplified flow
model (GloGEMflow) to overcome the earlier simplified ice thickness change parameterization (Huss et al., 2010) for determina-
tion of future glacier volume change. This model was applied to a large sample of glaciers in the Alps (Zekollari et al., 2019). The
Open Global Glacier Model (OGGM) by Maussion et al. (2019) provides a range of modular capabilities (mass and energy balance,
ice flow, volume and geometric evolution) to compute future glacier evolution for both individual and groups of glaciers. Coded in
Python, the source code is open to the community for further improvement (e.g., new functionalities) and offers the possibility to
further improve calculations based on input from numerous experts.

4 Observed glacier changes and future evolution
4.1 Observed changes

The spectacular retreat of most glaciers during the past 100-150 years has been recognized by the public as well as by policy-related
organizations far beyond scientific circles. It is among the clearest—if not the clearest—indication in nature that climatic conditions
have been changing rapidly and at a worldwide scale (IPCC, 2013; IPCC SROCC, 2019). One of the most remarkable phenomena in
this context is the interannual and spatial homogeneity of the signal as observed especially since the latest part of the twentieth
century (Zemp et al., 2015; Fig. 17). Intermittent glacier re-advances were reported from various parts of the world, especially from
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Fig. 16  Reconstruction of the glacier contribution to sea-level change based on data about cumulative glacier length change. Values for n; denote different length/
volume scaling and the dots (Spy) show the cumulative effect of global annual mass balance as calculated by Dyurgerov and Meier (2005) from observations.
Reproduced from Oerlemans J, Dyurgerov M, and van de Wal RSW (2007) Reconstructing the glacier contribution to sea-level rise back to 1850. Cryosphere 1:
59-65, with permission from J. Oerlemans.
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Fig. 17 Global glacier front variation observations from 1535 to 2017. Qualitative summary of cumulative mean annual front variations. The colors range from dark
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figure is based on all available front variation observations and reconstructions, excluding absolute annual front variations larger than 210 m a~" in order to reduce
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UNEP/UNESCO/WMO. Zurich, Switzerland: World Glacier Monitoring Service. Publication based on database version. doi: 10.5904/wgms-fog-2019-12, free
download.

the Alps, where mass balances were predominantly positive during the late 1960s and 1970s. Similarly, the advance period of
glaciers in Scandinavia during the 1990s can be related to a surplus of mass due to higher winter precipitation in the years before
(e.g., Nesje, 2005). Steep outlet glaciers from major ice caps with short response times showed the strongest advances (Winkler and
Nesje, 2009). For the first time, empirical information about glacier responses to well-documented and strong signals in mass-
balance history started to become available. Other glacier advance periods such as in the 1890s and 1920s are less constrained by a
specific meteorological forcing. Grove (2004) and Paul and Bolch (2019) provide overviews concerning the abundant literature
related to this evolution. It has to be noted that in regions with many surge-type glaciers (cf. Sevestre and Benn, 2015) possible
“advance periods” can actually also be related to several glaciers being in the active phase of their surge cycles. As surges generally
occur independent of a specific climatic forcing (e.g., Jiskoot, 2011), a careful check of the sample is required.

Comparison with past glacier front variations can be made on the basis of moraines deposited during earlier maximum extents
and of trees overridden by the ice after earlier minimum extents and now becoming exposed at retreating glacier margins.
Interpretation of such deposits require careful reflections about the mechanisms of dynamic glacier response, the corresponding
delay with respect to mass balance and climate forcing, as well as various other effects (e.g., building up of elevated morainic glacier
beds as often observed for heavily debris-covered glaciers). Solomina et al. (2008) explain such glaciological frameworks and
provide an overview, indicating that by the first years of the twenty-first century glacier lengths and volumes have shrunk beyond
variability ranges during the late Holocene (about the past 5000 years) in many mountain ranges. Moreover, they found that in
many cases upper (warm and energy-rich) limits of variability ranges of glacier extent and volume during even the entire Holocene
may have been reached and could soon be exceeded (cf. Reichert et al., 2002). This is especially remarkable as present-day incoming
radiation on the Northern Hemisphere is considerably reduced in comparison with conditions during the early Holocene. General
overviews on glacier fluctuations over the past 2000 years and the Holocene are provided by Solomina et al. (2015, 2016).

In principle, unchanged climatic conditions would cause mass balances to approach zero values after some time. Constantly
non-zero mass balances therefore reflect continued climatic forcing and the observed trend of increasingly negative mass balances is
consistent with an accelerated trend in global warming and correspondingly enhanced energy flux toward the earth surface.
Reconstructed mass balance time series for the Northern Hemisphere (Letréguilly and Reynaud, 1990) clearly revealed the
widespread, long-term, and rather simultaneous trend of glacier mass loss during the twentieth century. Based on overview studies
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by Dyurgerov and Meier (2005), Kaser et al. (2006), Meier et al. (2007), Cogley (2009), and Zemp et al. (2009), the time between
1980 and 2020 shows a clear accelerating trend of mass loss (Fig. 8). Based on a combination of mass balance and inventory data,
glaciers in the European Alps are now estimated to have lost about half their total volume (roughly —0.5% per year) between the end
of the Little Ice Age (1850) and 1975. In their recent model inter-comparison, Farinotti et al. (2019a,b) estimate the glacier volume
in Central Europe at 130 & 30 km? for the year 2003. Based on the compilation of annual volume losses by Zemp et al. (2019) and
a rough guess of about 4-km?® volume loss in the most recent years of 2017 and 2018, a total volume loss of some 40-50 km?
(slightly more than —1 km? per year) can be estimated for the time period since 1980 (Haeberli et al., 2019; Zekollari et al., 2019).
Roughly 30 km® (-2 km> per year) were lost during the past 15 especially hot years (Haeberli et al., 2019; Zekollari et al., 2019).
On a global scale, glaciers have lost about 9600 Gt of water from 1961 to 2016 according to Zemp et al. (2019), which gives a total
glacier area of 705,740 km? and over a 55-year period a mean specific loss of -0.25 m w.e. per year. From 2006 to 2016 this rate
doubled to -0.48 m w.e. or -335 Gt a~' giving a roughly 0.9 mm contribution to sea-level rise each year (about 1/3 of all
contributions) and a loss of 0.23% per year of the total remaining glacier volume (i.e., 161,543 km?).

The new global assessment of glacier mass loss since 1961 by Zemp et al. (2019) has become possible by combining the annual
mass balance measurements performed in the field with geodetic mass balances from nearly 20,000 glaciers derived from satellite
data (DEM differencing) and statistical modeling. Somewhat lower values for global glacier mass loss over this recent period have
been derived from a range of other methods (see 3.4), for example satellite altimetry and gravimetry (Bamber et al., 2018) or
numerical modeling (Marzeion et al., 2018). However, this could also be due to slightly different samples. Independent of the
techniques applied, all more-regional scale studies on glacier mass changes from DEM differencing revealed a high spatial
heterogeneity of glacier-specific as well as regionally averaged values, dominant mass loss in nearly all regions of the world over
the past two decades, and approximately stable conditions only in the Pamir-Karakoram-Kunlun Shan Region (e.g., Shean et al.,
2020; Fig. 14). The reasons for this diverting behavior are not fully understood (field measurements are largely absent) and the
special climatic and topographic conditions in this region are thus a key subject of current research (e.g., Farinotti et al., 2020).
Analysis of historic DEMs reveal that balanced mass budgets persist in the Karakoram since the 1970s (Bolch et al., 2017; Zhou et al.,
2017) and regular glacier surges occurred over at least the last 200 years (Paul, 2020).

Numerous studies have used time-series of satellite data to create glacier outlines from different points in time to perform change
assessment. In most cases these studies are temporally restricted by the scenes available from Landsat Thematic Mapper (TM), i.e.,
back to about 1985, but often older images (back to 1972) from the Landsat Multispectral Scanner (MSS) are also considered. Some
examples are Nuth et al. (2013) for Svalbard, Winsvold et al. (2014) for Norway, Paul et al. (2020) for the Alps, Khromova et al.
(2019) for E-Russia, Veettil et al. (2017) for the tropical Andes, and Tielidze and Wheate (2018) for the Caucasus. An overview on
earlier studies can be found in Vaughan et al. (2013). In all these regions the partly strong shrinkage (up to about -2% a™') of
glaciers can be followed. The historic extents are particularly useful to constrain the regions where glacier volume changes are
extracted. Some studies have used digitizing of trimlines and other techniques to also create maximum glacier extents from near the
end of the Little Ice Age. Some examples are Baumann et al. (2009) for a part of Norway, Fischer et al. (2015a,b) for Austria, Meier
et al. (2018) for Patagonia, Loibl et al. (2014) for SE-Tibet, or Lucchesi et al. (2014) for NW-Italy. The further application of these
datasets (e.g., to initialize glacier evolution models) is still ahead.

4.2 Outlook for glaciers

Since the time of F.A. Forel, the first president of the International Glacier Commission, various aspects involved in monitoring have
changed in a most remarkable way. There is hardly a question anymore of the originally envisaged periodical variations of glaciers.
Under the growing influence of human impacts on the climate system (enhanced greenhouse effect), dramatic scenarios of future
developments—including complete deglaciation of entire mountain ranges—must be considered (Marzeion et al., 2018; Hock
etal., 2019; IPCC SROCC, 2019). For example, global and regional ice-mass decline rates have been generated for three scenarios of
climate change based on representative concentration pathways (RCP) of greenhouse gas concentrations (Fig. 18). Such future
scenarios may lead far beyond the range of historical/Holocene variability and most likely will introduce processes (extent and rate
of glacier vanishing and difference from equilibrium conditions) without corresponding precedence. An example for such new
conditions is depicted in the Sentinel-2 image from Franz-Josef-Land depicted in Fig. 9. Maybe for the first time, most of the ice caps
in the region lost the largest part of their snow cover during the preceding summer and were subject to massive surface melt. For flat
ice caps such as these, conditions like this could be the beginning of their end.

The increasingly rapid (vertical) thickness loss combined with the delayed (horizontal) retreat now in many cases has begun to
cause a reduction in slope- and thickness-dependent driving stress. This effect, in turn, reduces ice flux toward the glacier margins
and leads to a change from an active retreat mode of glacier shrinkage to more and more widespread stagnation, down-wasting,
collapse, or disintegration modes of glacier vanishing (Paul et al., 2007a). A spectacular phenomenon accompanying such
developments is the formation of large caves at the glacier bed (Fig. 19) and resulting collapse phenomena. Increased melt-water
runoff at the glacier bed melts out large vaults in the ice above, which the reduced glacier thickness (decreasing normal stress) cannot
efficiently compress anymore during wintertime. Rising warm (summer) air from the glacier forefield can then better penetrate into
these large caves and enhance melting of the ice roof. Few quantitative effects from increased sub-glacial melting have been reported
but may represent an additional positive feedback mechanism of glacier shrinking. There is also self-acceleration of glacier down-
wasting due to the higher temperatures at lower elevations. In particular, for large and flat glacier tongues this process is becoming
increasingly important. Locally, an increasing amount of debris cover might slow down this process (Jouvet et al., 2011). In contrast,
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albedo lowering due to very small particles (e.g., transported to the glacier surface from increasingly ice-free lateral moraines) will
enhance surface melt (Oerlemans et al., 2009; cf. Fig. 4). The increasing number of pro-glacial lakes (Paul et al., 2007a; Emmer et al.,
2015) will enhance glacier melt for a couple of years but can increase the hazard potential for a much longer time (see Section 5).

A rapidly approaching problem in the field of glacier monitoring is the imminent disappearance of glaciers with long mass-
balance records. Extensive mass-balance observations, as well as less sophisticated determinations of mass changes as regional
climate signals, are based on studies of a limited number of small- to medium-size glaciers (Braithwaite, 2002) with surface areas
typically a few km?, and average thicknesses of tens rather than hundreds of meters (Table 2). With yearly thickness losses increasing
from characteristic 20th-century values of a few tens of centimeters to nearly a meter, many of these glaciers are likely to disintegrate
and completely vanish within the coming decades (Paul et al., 2007a; Zemp et al., 2006; Carturan et al., 2013). Such processes can
already be observed throughout the Alps (Paul et al., 2007b): From the nine glaciers with long-term mass-balance series, some
might disappear soon or have already started to disintegrate (Fig. 20; Carturan et al., 2013) as the example of the Caréser Glacier in
the Italian Alps impressively shows.

Mass-balance measurements could lose value as a climate indicator due to disintegration of the observed glacier, years before the
final ice remnant has melted (Carturan et al., 2020). In order to save the mass-balance network through the near future and to
guarantee continuity of the measured data, new and larger glaciers which reach to higher elevations must be envisaged as
replacements. Corresponding activities must start now or at least very soon, because an overlapping time period with parallel
measurements on the previous as well as on the new glaciers must be foreseen (Carturan, 2016). A strategy for assessing suitable
new glaciers should be based on field experience and local knowledge but should also consider observed changes (Pelto, 2010) and
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Fig. 19 Subglacial cave at Morteratsch Glacier, Swiss Alps. The thin ice of the tongue (reduced normal stress) cannot close—in wintertime—the large channels
melted out in the basal ice in summer. Ablation underneath the glacier starts to increase due to enhanced inflow of warm air. The glacier margin has melted back far
beyond this site since this photo was taken. Photograph by J. Alean, 2009.

Table 2 Characteristics and changes of glaciers with long-term mass balance observations in the Alps.

Name Year Az kmP)  Ago (kmP)  AA (%) Voo, h(m) S bsoosmwey  AV(%)  AAAV  Decay time
Sonnblick (AU) 1959 177 1.39 20 45 20-30 15 55 0.36 2010-30
Vernagt (AU) 1965  9.56 8.36 20 435 40-50  -15 30 0.66 2050-?
Kesselwand (AU) 1953  4.24 3.85 10 255 55-65 -6 10 1 2020-?
Hintereis (AU) 1953  9.47 7.40 20 840 80-90  -21 20 1 2100-?
Careser (IT) 1967  4.68 2.83 40 175 30-40  -35 75 0.53 2010-30
Silvretta (CH) 1960  3.25 2.89 10 165 45-55  -15 28 0.36 2030-?
Gries (CH) 1962  6.60 5.26 20 540 75-85 24 25 0.80 2040-?
St. Sorlin (FR) 1957  3.54 3.00 15 155 40-50 24 50 0.30 2030-70
Sarennes (FR) 1949 0.90 0.50 44 25 20-30  -32 i) 0.49 2010-40
Findelen 2005  19.9 15.3 23 1610 80-90  -19 21 1.1 2050-?

Year, beginning of regular mass balance determinations; A-q, surface area around 1970; Aqo, surface area around 2000; AA, area change; V-, estimated volume in 1970; h,
estimated mean glacier thickness around 1970; > bgo g, cumulative mass balance 1980-2006; AV, volume change from around 1970/80 to 2006; Decay time, estimated time of
possible glacier disappearance; disintegration or complete loss of accumulation area (? = undefined). Values are rounded and rough estimates based on WGMS data and the
parameterization scheme of Haeberli and Hoelzle (1995).

simplified rules. Apart from glacier size and elevation range, also their topographic (e.g., hypsometry) and morphological
characteristics (e.g., breaks in slope) should be considered (Carturan et al., 2020).

5 Impacts and adaptation

With plausible/realistic scenarios of climate evolution the Earth’s glacier cover will be dramatically reduced within the coming
decades (Marzeion et al., 2018; Hock et al., 2019). Consequences of glacier disappearance are likely to be strongly felt in connection
with landscape evolution, geomorphological systems processes, options for new developments and natural hazards/risks in cold
mountains, as well as with the water cycle at local to global scales. The following is an attempt to outline prominent aspects
concerning the full complexity of the involved changes, consequences and challenges.



The Response of Glaciers to Climate Change: Observations and Impacts 21

1980-1990

Mean annual elevation change

meters/year
-5.0- -4.0
W 40- -30

-3.0- -2.0

1933-1959

Fig. 20 Disintegration between 1933 and 2014 of Careser glacier (Italian Alps)—a long-observed important but now rapidly vanishing glacier in the worldwide
glacier mass-balance network. Updated by L. Carturan based on Carturan L, Filippi R, Seppi R, Gabrielli P, Notarnicola C, Bertoldi L, Paul F, Rastner P, Cazorzi F,
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Dinale R, and Dalla Fontana G (2013) Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): Controls and imbalance of the
remaining glaciers. The Cryosphere 7: 1339-1359.
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Fig. 21 Landscape transformation in the Alps and comparable mountain ranges. Periglacial processes relate to intense frost while paraglacial processes include
system reorganization after de-glaciation. Because of slow heat diffusion at depth, subsurface ice in deeply thermally disturbed permafrost will continue to exist after
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5.1 New landscapes and geomorphic systems

The progressive retreat and disappearance of glaciers causes new landscapes to form with geo- and ecosystems of rocks, debris,
sparse vegetation, new lakes and slowly thawing permafrost (Haeberli et al., 2017). Glacial environments thereby primarily change
into periglacial and fluvial systems (Fig. 21; Haeberli et al., 2017; Carrivick and Heckmann, 2017). As highly different response
characteristics with time scales of decades to many millennia are involved (Ballantyne, 2002), conditions of strong and long-lasting
dis-equilibrium of geomorphic and biological processes must be expected. Anticipating, understanding and modeling such new
landscapes in view of potential opportunities and risks is a new, emerging research field. Pioneering investigations so far primarily
created qualitative to semi-quantitative knowledge. Strong needs exist for comprehensive, quantitative modeling of highly inter-
connected systems as a basis for sustainable adaptation in view of possible human activities and infrastructure developments within
the new landscapes as well as of large-scale process chains reaching far beyond them into already inhabited areas (Haeberli, 2017).

The basic step for quantitatively studying future landscapes in de-glaciating regions was the introduction by the World Glacier
Monitoring Service (WGMS) of 3D/slope-related approaches for estimating glacier thicknesses in analyses of glacier inventory
information (Haeberli and Hoelzle, 1995; cf. Haeberli, 2016). These approaches later combined with digital terrain information to
construct distributed glacier-bed topographies (Linsbauer et al., 2009, 2012; Carrivick et al., 2016) provide realistic approximations
of future surface topographies after ice-retreat. The resulting information enables glacier-bed overdeepenings to be determined as
sites of possible future lake formation in various regions such as the Himalaya-Karakoram (Fig. 22; Linsbauer et al., 2016), the
cordilleras of Peru (Colonia et al., 2017), Central Asia (Kapitsa et al., 2017) or the French Alps (Magnin et al., 2020). The reliability
of the obtained information must be considered with respect to the accuracy of calculated glacier-bed topographies and to local
factors influencing lake formation processes. Extensive testing with field data and inter-comparison of numerical models for ice-
thickness calculations (Farinotti et al., 2017) document that absolute values of glacier thickness remain uncertain within about
10-20% of the estimated values for larger samples and even beyond that for individual cases. This is primarily due to the difficulty
of appropriately parameterizing mass fluxes related to the surface mass balance and flow of unmeasured glaciers. In contrast to such
considerable uncertainties about absolute elevations of glacier-bed topographies and potential future surfaces, corresponding
spatial patterns and topological characteristics more directly depend on surface slope and are therefore more reliable. The best
procedure for mapping presently still glacier-covered overdeepenings is to combine numerical modeling with morphological
criteria (Frey et al., 2010; cf. Colonia et al., 2017; Magnin et al., 2020) for defining confidence levels of the obtained results.
Beyond such technical aspects, the possible existence of still unpredictable, local deep and narrow incisions at potential lake outlets



The Response of Glaciers to Climate Change: Observations and Impacts 23

: : o - S B o > - T
36 °N + N 3 gz < : VTN : £ . Modelled overdeepenings I
- i ~ y 2 deep

- shallow

l:| Glacier inventory

36 °N

76 °E 77 °E 77 °E 77 °E

Fig. 22 Modeled glacier-bed overdeepenings as sites of potential future lake formation in the Himalaya-Karakoram region (cf. Linshauer et al., 2016).

can limit lake formation. Moreover, sediment infill defines potential future lake-lifetimes and must be considered in connection
with lake geometries and sediment cascades in the lake catchment.

Important aspects that characterize geomorphic systems and surface processes in newly developing, de-glaciating mountain
landscapes relate to slope instability and activated sediment cascades. This is because the slow stabilization of freshly exposed debris
by vegetation and soil development takes place over time periods of decades to centuries and millennia (Egli et al., 2006; Eichel
et al, 2015; Cuesta et al., 2019), and to processes of glacial de-buttressing and permafrost degradation (Ballantyne, 2002; Noetzli
and Gruber, 2009; Kos et al., 2016; Deline et al., 2020). Many ice-related rock avalanches were recently documented around the
world (Huggel, 2009; Deline et al., 2020; Evans et al., 2020). Examples are the Brenva and Triolet rock avalanches in the Mont Blanc
massif in the eighteenth and twentieth centuries (Deline, 2009), the Kolka-Karmadon ice/rock-avalanche in the Caucasus (Huggel
etal., 2005; Evans et al., 2009), a significant number of rock avalanches in the Karakorum (Hewitt, 1988), and in British Columbia,
Canada (Geertsema et al., 2006; Coe et al., 2018), just to name a few. Continued atmospheric temperature rise could cause
enhanced meltwater percolation into cold firn with a widespread transformation of cold to polythermal or temperate ice on steep
slopes and thus alter the potential source zones for ice avalanches (Huggel et al., 2010), because cold ice masses are more stable at
steeper slopes than temperate ice (Huggel et al., 2004).

The number of large rock-ice avalanches from warming and degrading permafrost is apparently increasing (e.g., Coe et al., 2018;
cf. Krautblatter et al., 2013; Patton et al., 2019). This is especially dangerous where large high-energy events (De Blasio et al., 2018)
can affect major lakes and produce impact flood waves with far-reaching consequences (Haeberli et al., 2017), or where subsequent
process chains including debris flows reach inhabited areas (Carey et al., 2012a; Walter et al., 2019). Sediment cascades in new
landscapes can be intensified as the disappearance of ice in most cases implies increased sediment availability. Since the end of the
Little Ice Age, new proglacial areas with marked moraines and large amounts of poorly consolidated sediments have been uncovered
and are now prone to erosion, slope failure and debris flows. In the Alps, some of the largest debris flows that have occurred in
recent years originated from such formerly glacierized areas (Zimmermann and Haeberli, 1992; Chiarle et al., 2007; Huggel et al.,
2010). Erosion rates in recently-exposed moraine-covered terrain or steep rock slopes can drastically increase (Hinderer, 2001;
Fischer et al., 2012). The resulting additional input of loose material can affect river systems over extended distances and time scales
(Lane et al., 2017). The enhanced sediment availability and erosion will likely have serious implications for the management of
alpine reservoir lakes connected to hydropower facilities (Boillat et al., 2003). More rapid filling of lakes by sediment and enhanced
input of sediment into turbines will lead to extremely costly maintenance, which additionally affects the operation schedule of these
facilities. Sediment cascades can, however, also be locally interrupted by the formation of new lakes in de-glaciating areas, which
function as efficient sediment traps, holding back larger components and high percentages of suspended load. Repeated bathy-
metric surveys of new lakes provide important information about sediment supply and related future life times of new lakes.
Characteristic supply rates into new lakes from de-glaciating catchments have been derived from Pasterze, Austrian Alps, to amount
to about 107 to 10* tons per km? per year (Geilhausen et al., 2012). Catchment size and erosion rates define the ratio between lake
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volumes and the input rate of sediments: Shallow depressions may rapidly transform into floodplains but a good number of
modeled new lakes (if formed) can easily attain lifetimes of 10°~10° years even with high debris inputs (Linsbauer et al., 2016).
A promising way forward towards more detailed quantification and improved projections of related emerging geomorphic systems
in new landscapes after ice retreat is to combine information from estimates of bedrock or sediment characteristics of glacier beds to
be exposed (Zemp et al., 2005) with quantitative landform analyses of already exposed glacier fore-fields. Carrivick et al. (2018), for
instance, attribute major geomorphological landform types (Fig. 23) and process domains (fluvial, fans, moraine/scree, bedrock) in
mountain catchments to characteristic ranges of slope angle. Information about the latter exists in now-available “DEMs without
glaciers” (Linsbauer et al., 2009).

5.2 Glacier vanishing and water

Mountains with snow and ice are important “water towers” serving vast surrounding lowlands (Immerzeel et al., 2019). These water
supplies are, however, also highly sensitive to impacts from global warming. Corresponding consequences affect the water cycle and
related aspects of human livelihood at local to regional, continental and global scales (Haeberli, 2019).

At global scales, sea-level rise will constitute a major challenge for human civilization (IPCC SROCC, 2019; Allison et al., 2020).
The total possible contribution of glaciers and ice caps other than the continental ice sheets of Antarctica and Greenland is estimated
at a few tens of centimeters (Oerlemans et al., 2007; cf. Huss and Hock, 2015). Glacier melt-water influx to the ocean has been
increasing during the past few decades (Fig. 24) and most likely continues far into our century to constitute a primary source of sea-
level rise (Meier et al., 2007). An estimated 10-15% of the ice remaining in tidal glaciers is already below sea level (Haeberli and
Linsbauer, 2013; cf. Huss and Hock, 2015; Farinotti et al., 2019a). Some glacier melt-water might not reach the ocean but evaporate
along systematically lengthening paths to the ocean or be kept back in over-deepened parts of glacier beds, which may become lakes
or groundwater-bearing floodplains when exposed by glacier retreat (Marzeion et al., 2016). The latter effect is pronounced in the
Himalaya-Karakoram region where a large number of new lakes and floodplains may come into existence (Fig. 22; Linsbauer et al.,
2016). Especially in Asia, considerable amounts of glacial melt-water do not reach the ocean but end in endorheic basins (Huss
et al., 2017). Due to the strongly-delayed response of larger glaciers (tens of years to more than a century, Haeberli and Hoelzle,
1995) important commitments exist: Future large additional glacier mass losses must be considered inevitable, making the
identification and execution of appropriate adaptation measures mandatory (Marzeion et al., 2018).

At continental to regional scales, impacts from global warming increasingly affect the seasonality of river discharge as liquid
precipitation is more quickly released than when stored in snow and glacial systems. An important seasonal shift of water resources
from summer to spring takes place, unfavorably affecting agriculture and irrigation in the lowlands (Hagg et al., 2013). In fact,
seasonal changes in available water resources due to enhanced early melting of snow and ice are among the most important socio-
economic implications of climate change effects on glaciers, especially in semi-arid regions (Bradley et al., 2006; Sorg et al., 2012).
A robust projection is the general shift of mid-latitude peak runoff from summer toward spring. Continued atmospheric warming
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Fig. 24  Overall regional glacier contribution from 1961 to 2016 (A) and overall development in time of global glacier melt-water contribution to sea level rise (B).
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first causes additional water supplies at the expense of the reduction of long-term water storage as ice in glaciers. Such melt-water
surplus goes through a maximum called “peak water” in areas where glaciers still exist but then diminishes with further decreasing
glacier areas. The timing of peak water is primarily a function of glacier size and climate scenarios. For most mountain ranges on
Earth, peak water already has occurred during the past decades or will take place until around mid-century (Huss and Hock, 2018).
Only those catchments with the largest glaciers in the Himalaya-Karakoram range or in the Chugach Mountains of Alaska will
experience peak flow as late as the second half of the century. In regions with dry/warm seasons such as the upper Tarim River in
central Asia (Duethmann et al., 2015), stream-flow tended to increase due to glacier mass losses during the past decades in some
headwater catchments but it is likely to soon start declining if not compensated by increasing precipitation (Hoelzle et al., 2019).
As compared to a 1961-90 reference period, Juen et al. (2007) already modeled a ~10-20% runoff decrease in the dry season for a
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Fig. 25 Proglacial lakes in exposed sedimentary glacier beds at Hooker (upper left) and Mueller (from lower left to center) Glaciers, New Zealand. Photograph by T.
Chinn.

34% glacierized catchment in the Cordillera Blanca, Peru, depending on time horizons (2050, 2080) and emission scenarios, and a
~10-25% runoff increase during the humid season (cf. Baraer et al., 2012). An ongoing shift towards earlier snowmelt tends to
increase the pressure on freshwater availability during the early vegetation period (Dietz et al., 2014). Some limited amounts of
water from slowly-thawing subsurface ice in widespread permafrost areas is likely to continue flowing during extended future time
periods (centuries; cf. Jones et al., 2018). This phenomenon needs intensified scientific research.

At local to regional scales, glacier thinning and retreat has led to the formation of numerous new lakes in high-mountain regions
(Fig. 25) and more lakes are likely to form in the near future as a result of continued glacier shrinkage. The formation of new lakes in
de-glaciating areas involves opportunities but also enhanced risks (Haeberli et al., 2016a). Opportunities primarily relate to
hydropower production and freshwater supply while risks concern sudden and far-reaching floods. Disastrous outbursts floods
from glacier lakes have repeatedly been reported (Evans and Clague, 1994: cf. Emmer, 2017; Clague and O’Connor, 2020). Glacier
lakes can be classified into several types according to their position relative to the glacier, their morphogenetic setting and the dam
characteristics (Richardson and Reynolds, 2000; Clague and Evans, 2000; Cook and Quincey, 2015). Outburst susceptibility is
closely related to such criteria (Emmer and Vilimek, 2014). Lake geometries are extremely variable. Detailed bathymetries and
model calculations show that no simple geometric rules exist. Predictions of water depths or volumes for unmeasured lakes from
empirical-statistical rules have high uncertainty ranges (Haeberli et al., 2016b; Mufoz et al., 2020) and must be considered to be
order-of-magnitude estimates only.

5.3 Dealing with options and risks

As a consequence of continued glacier retreat, areas are becoming increasingly accessible for various new human activities. These
areas are, however, in transient conditions with intensified surface processes related to complex interconnected geo- and ecosystems
which are far out of equilibrium and will need long time periods to stabilize. Moreover, various interests are coming into play and
need harmonization. Options and risks related to these newly-accessible regions and their surroundings must therefore be carefully
considered. Constructive and critical reflection, especially concerning possible uses, has hardly begun yet but is of highest
importance in view of sustainable adaptation strategies. Options for infrastructure development primarily relate to hydropower
development, to freshwater supply and to tourism, but these options must respect hazard/risk potentials, environmental concerns
and landscape protection (Haeberli et al., 2016a). Regional-to-global worldwide future potential capacities concerning freshwater
supply and hydropower production from possible artificial reservoirs in remaining glacier-covered regions have been roughly
assessed (Farinotti et al., 2016, 2019b) and a number of specific projects in the European Alps are already quite far advanced (Terrier
et al.,, 2011; Haeberli et al., 2016a).

Concepts of hazard reduction and risk management commonly relate to future time periods of decades. In connection with
continued global warming and ice disappearance, anticipation of hazards over such future time periods faces difficult challenges: Ice
conditions and related natural systems will not only be different from the past but also from the present. Scenario-based
assessments must therefore be applied. A technical guidance document has been produced by GAPHAZ (2017), the Scientific
Standing Group for Glacier and Permafrost Hazards in Mountain Regions of the International Association of Cryospheric Sciences
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(TACS) and the International Permafrost Association (IPA). The treatment of process chains with potential impacts far beyond
historically-affected reaches (Huggel et al., 2005; Carey et al., 2012a; Walter et al., 2019) represents a specific challenge, especially in
relation to already-existing but also possible future new lakes and in connection with decreasing stability of surrounding
de-buttressed slopes and icy peaks as the result of degrading permafrost (Magnin et al., 2020). Remarkable progress has been
achieved with the modeling of such process chains using corresponding model chains (Schneider et al., 2014; Westoby et al., 2014;
Somos-Valenzuela et al., 2015, 2016; Frey et al., 2018; Mergili et al., 2020). Critical questions thereby relate to assumptions about
break-off volumes in initial high-energy mass movements (Schaub et al., 2016; cf. De Blasio et al., 2018) and to the quantification of
erosional effects and corresponding transitions between floods, hyperconcentrated flows and debris flows (Schneider et al., 2014).
The frequency of outburst floods from moraine-dammed lakes seems to remain rather stable in time despite growing lake areas
(Harrison et al., 2018; Veh et al., 2018, 2019). There are several possible reasons for this, among others being that breaching of
moraine dams can eliminate dangerous lakes, mostly making such events non-repetitive, or that continuous glacier retreat leads to
lake formation at increasing distances from terminal moraines built up during repeated Holocene glacier advances under colder
conditions. The latter effect, on the other hand, enables lake formation closer and closer to slowly destabilizing rugged icy peaks,
thereby increasing the probability of floods from impact waves in connection with ice-rock avalanches.

Hazard assessments in view of dangerous natural processes (Haemmig et al., 2014; Schneider et al., 2014; Munoz et al., 2016;
Frey et al., 2018) form an essential basis for developing risk reduction strategies. In view of lakes and long-term adaptation
strategies, however, and especially in connection with possible needs for large infrastructure and investment, the first steps have
been undertaken to include societal perspectives such as risks from droughts or competitive and growing demands (Drenkhan et al.,
2019; cf. Brunner et al., 2019). Concerning new lakes, multi-purpose projects combining flood retention, hydropower production,
freshwater supply and possibly even tourism may enable politically acceptable options with realistic funding possibilities (Kellner,
2019). Such integrative solutions require participatory planning (Haeberli et al., 2016a) and polycentric governance (Kellner et al.,
2019). Difficult questions concerning loss and damage may thereby have to be analyzed (Huggel et al., 2019) in order to avoid
unintended conflicts (Carey et al., 2012b) and to fully meet the challenge of sustainably adapting to impacts from climate change in
presently still glaciated mountain systems (McDowell et al., 2019).

6 Conclusion and outlook

Systematic and internationally coordinated observation with free data access of glacier response to climatic changes already started
in the late 19th century. Its results today represent a unique information source concerning the long-term evolution of climate-
sensitive cold-mountain environments. Focused field investigations combined with products from modern remote sensing
technologies today provide rich, worldwide and detailed quantitative data, which document a clear overall trend of rapid if not
accelerating glacier shrinking. This phenomenon is perceivable and understandable to a wide public as a key indication of ongoing
energy increase in the global climate system. Results of corresponding numerical model calculations as related to past developments
as well as to realistic future scenarios have remained robust for decades.

As glacier retreat is a delayed response to climate change, most glaciers are now far out of equilibrium. Moreover, future climate
scenarios only start to markedly deviate from each other after about mid-century. As a consequence of these two factors, further
rather dramatic glacier mass losses appear to be inevitable and many low-latitude mountain chains may essentially loose their
glaciers within the coming decades. It is therefore now high time to start thinking beyond glaciers and to plan for adaptation
strategies related to cold-mountain environments in transition from glacial to periglacial environments and under conditions of
strong and long-lasting imbalances. Realistic and comprehensive anticipation, modeling and managing is needed of new landscapes
with their surface processes as well as options and risks for human activities. In this rapidly emerging research field, modern
quantitative, integrative and future-oriented geomorphology must play a key role.
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